Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry.

Searle BC, Pino LK, Egertson JD, Ting YS, Lawrence RT, MacLean BX, Villén J, MacCoss MJ.

Nat Commun. 2018 Dec 3;9(1):5128. doi: 10.1038/s41467-018-07454-w.

2.

Micro-Data-Independent Acquisition for High-Throughput Proteomics and Sensitive Peptide Mass Spectrum Identification.

Heaven MR, Cobbs AL, Nei YW, Gutierrez DB, Herren AW, Gunawardena HP, Caprioli RM, Norris JL.

Anal Chem. 2018 Aug 7;90(15):8905-8911. doi: 10.1021/acs.analchem.8b01026. Epub 2018 Jul 23.

PMID:
29984981
3.

High-throughput database search and large-scale negative polarity liquid chromatography-tandem mass spectrometry with ultraviolet photodissociation for complex proteomic samples.

Madsen JA, Xu H, Robinson MR, Horton AP, Shaw JB, Giles DK, Kaoud TS, Dalby KN, Trent MS, Brodbelt JS.

Mol Cell Proteomics. 2013 Sep;12(9):2604-14. doi: 10.1074/mcp.O113.028258. Epub 2013 May 21.

4.

Systematic evaluation of data-independent acquisition for sensitive and reproducible proteomics-a prototype design for a single injection assay.

Heaven MR, Funk AJ, Cobbs AL, Haffey WD, Norris JL, McCullumsmith RE, Greis KD.

J Mass Spectrom. 2016 Jan;51(1):1-11. doi: 10.1002/jms.3716.

5.

Multiplexed and data-independent tandem mass spectrometry for global proteome profiling.

Chapman JD, Goodlett DR, Masselon CD.

Mass Spectrom Rev. 2014 Nov-Dec;33(6):452-70. doi: 10.1002/mas.21400. Epub 2013 Nov 26. Review.

PMID:
24281846
6.

Improvements in Mass Spectrometry Assay Library Generation for Targeted Proteomics.

Teleman J, Hauri S, Malmström J.

J Proteome Res. 2017 Jul 7;16(7):2384-2392. doi: 10.1021/acs.jproteome.6b00928. Epub 2017 Jun 6.

PMID:
28516777
7.

PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data.

Ting YS, Egertson JD, Bollinger JG, Searle BC, Payne SH, Noble WS, MacCoss MJ.

Nat Methods. 2017 Sep;14(9):903-908. doi: 10.1038/nmeth.4390. Epub 2017 Aug 7.

8.

[Application of peptide retention time in proteome research].

Shao C, Gao Y.

Se Pu. 2010 Feb;28(2):128-34. Chinese.

PMID:
20556949
9.

Cysteinyl peptide capture for shotgun proteomics: global assessment of chemoselective fractionation.

Lin D, Li J, Slebos RJ, Liebler DC.

J Proteome Res. 2010 Oct 1;9(10):5461-72. doi: 10.1021/pr1007015.

10.

Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning.

Gessulat S, Schmidt T, Zolg DP, Samaras P, Schnatbaum K, Zerweck J, Knaute T, Rechenberger J, Delanghe B, Huhmer A, Reimer U, Ehrlich HC, Aiche S, Kuster B, Wilhelm M.

Nat Methods. 2019 Jun;16(6):509-518. doi: 10.1038/s41592-019-0426-7. Epub 2019 May 27.

PMID:
31133760
11.

Hybrid data acquisition and processing strategies with increased throughput and selectivity: pSMART analysis for global qualitative and quantitative analysis.

Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M.

J Proteome Res. 2014 Dec 5;13(12):5415-30. doi: 10.1021/pr5003017. Epub 2014 Oct 14.

PMID:
25244318
12.

Semi-supervised learning for peptide identification from shotgun proteomics datasets.

Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ.

Nat Methods. 2007 Nov;4(11):923-5. Epub 2007 Oct 21.

PMID:
17952086
13.

Tandem mass spectral libraries of peptides and their roles in proteomics research.

Shao W, Lam H.

Mass Spectrom Rev. 2017 Sep;36(5):634-648. doi: 10.1002/mas.21512. Epub 2016 Jul 12. Review.

PMID:
27403644
14.

Identification of a Set of Conserved Eukaryotic Internal Retention Time Standards for Data-independent Acquisition Mass Spectrometry.

Parker SJ, Rost H, Rosenberger G, Collins BC, Malmström L, Amodei D, Venkatraman V, Raedschelders K, Van Eyk JE, Aebersold R.

Mol Cell Proteomics. 2015 Oct;14(10):2800-13. doi: 10.1074/mcp.O114.042267. Epub 2015 Jul 21.

15.

LFQuant: a label-free fast quantitative analysis tool for high-resolution LC-MS/MS proteomics data.

Zhang W, Zhang J, Xu C, Li N, Liu H, Ma J, Zhu Y, Xie H.

Proteomics. 2012 Dec;12(23-24):3475-84. doi: 10.1002/pmic.201200017.

PMID:
23081734
16.

SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries.

Wu JX, Song X, Pascovici D, Zaw T, Care N, Krisp C, Molloy MP.

Mol Cell Proteomics. 2016 Jul;15(7):2501-14. doi: 10.1074/mcp.M115.055558. Epub 2016 May 9.

17.

One-hour proteome analysis in yeast.

Richards AL, Hebert AS, Ulbrich A, Bailey DJ, Coughlin EE, Westphall MS, Coon JJ.

Nat Protoc. 2015 May;10(5):701-14. doi: 10.1038/nprot.2015.040. Epub 2015 Apr 9.

18.

Performance metrics for liquid chromatography-tandem mass spectrometry systems in proteomics analyses.

Rudnick PA, Clauser KR, Kilpatrick LE, Tchekhovskoi DV, Neta P, Blonder N, Billheimer DD, Blackman RK, Bunk DM, Cardasis HL, Ham AJ, Jaffe JD, Kinsinger CR, Mesri M, Neubert TA, Schilling B, Tabb DL, Tegeler TJ, Vega-Montoto L, Variyath AM, Wang M, Wang P, Whiteaker JR, Zimmerman LJ, Carr SA, Fisher SJ, Gibson BW, Paulovich AG, Regnier FE, Rodriguez H, Spiegelman C, Tempst P, Liebler DC, Stein SE.

Mol Cell Proteomics. 2010 Feb;9(2):225-41. doi: 10.1074/mcp.M900223-MCP200. Epub 2009 Oct 16.

19.

Low Resolution Data-Independent Acquisition in an LTQ-Orbitrap Allows for Simplified and Fully Untargeted Analysis of Histone Modifications.

Sidoli S, Simithy J, Karch KR, Kulej K, Garcia BA.

Anal Chem. 2015 Nov 17;87(22):11448-54. doi: 10.1021/acs.analchem.5b03009. Epub 2015 Nov 5.

20.

Precise protein quantification based on peptide quantification using iTRAQ.

Boehm AM, Pütz S, Altenhöfer D, Sickmann A, Falk M.

BMC Bioinformatics. 2007 Jun 21;8:214.

Supplemental Content

Support Center