Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology.

Gas-Pascual E, Ichikawa HT, Sheikh MO, Serji MI, Deng B, Mandalasi M, Bandini G, Samuelson J, Wells L, West CM.

J Biol Chem. 2019 Jan 25;294(4):1104-1125. doi: 10.1074/jbc.RA118.006072. Epub 2018 Nov 21.

2.

Sweet and CRISP(R)y parasite engineering.

Wilson IBH, Schabussova I.

J Biol Chem. 2019 Jan 25;294(4):1126-1127. doi: 10.1074/jbc.H118.007210.

3.

Functional Characterization of Dense Granule Proteins in Toxoplasma gondii RH Strain Using CRISPR-Cas9 System.

Bai MJ, Wang JL, Elsheikha HM, Liang QL, Chen K, Nie LB, Zhu XQ.

Front Cell Infect Microbiol. 2018 Aug 28;8:300. doi: 10.3389/fcimb.2018.00300. eCollection 2018.

4.

Development of CRISPR/Cas9 for Efficient Genome Editing in Toxoplasma gondii.

Shen B, Brown K, Long S, Sibley LD.

Methods Mol Biol. 2017;1498:79-103.

PMID:
27709570
5.

Quantitative O-glycomics based on improvement of the one-pot method for nonreductive O-glycan release and simultaneous stable isotope labeling with 1-(d0/d5)phenyl-3-methyl-5-pyrazolone followed by mass spectrometric analysis.

Wang C, Zhang P, Jin W, Li L, Qiang S, Zhang Y, Huang L, Wang Z.

J Proteomics. 2017 Jan 6;150:18-30. doi: 10.1016/j.jprot.2016.08.012. Epub 2016 Aug 29.

PMID:
27585995
6.

QTL Mapping and CRISPR/Cas9 Editing to Identify a Drug Resistance Gene in Toxoplasma gondii.

Shen B, Powell RH, Behnke MS.

J Vis Exp. 2017 Jun 22;(124). doi: 10.3791/55185.

7.

Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii--host cell interactions.

Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, Schaeffer C, Van Dorsselaer A, Tomavo S.

Mol Cell Proteomics. 2008 May;7(5):891-910. doi: 10.1074/mcp.M700391-MCP200. Epub 2008 Jan 9.

8.

Toxoplasma CRISPR/Cas9 constructs are functional for gene disruption in Neospora caninum.

Arranz-Solís D, Regidor-Cerrillo J, Lourido S, Ortega-Mora LM, Saeij JPJ.

Int J Parasitol. 2018 Jul;48(8):597-600. doi: 10.1016/j.ijpara.2018.03.002. Epub 2018 Apr 3.

PMID:
29625127
9.

Suggestive evidence for Darwinian Selection against asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii.

Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings CV, Dvorin JD, Gubbels MJ, Robertson SD, Steffen M, O'Keefe BR, Robbins PW, Samuelson J.

Eukaryot Cell. 2010 Feb;9(2):228-41. doi: 10.1128/EC.00197-09. Epub 2009 Sep 25.

10.

Alteration of N-glycans and expression of their related glycogenes in the epithelial-mesenchymal transition of HCV29 bladder epithelial cells.

Guo J, Li X, Tan Z, Lu W, Yang G, Guan F.

Molecules. 2014 Dec 1;19(12):20073-90. doi: 10.3390/molecules191220073.

11.

Glycobiology of the ocular surface: mucins and lectins.

Argüeso P.

Jpn J Ophthalmol. 2013 Mar;57(2):150-5. doi: 10.1007/s10384-012-0228-2. Epub 2013 Jan 17. Review.

12.

A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome.

Narimatsu Y, Joshi HJ, Yang Z, Gomes C, Chen YH, Lorenzetti FC, Furukawa S, Schjoldager KT, Hansen L, Clausen H, Bennett EP, Wandall HH.

Glycobiology. 2018 May 1;28(5):295-305. doi: 10.1093/glycob/cwx101.

PMID:
29315387
13.

CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement.

Hussain B, Lucas SJ, Budak H.

Brief Funct Genomics. 2018 Sep 27;17(5):319-328. doi: 10.1093/bfgp/ely016. Review.

PMID:
29912293
14.

Systems Glycobiology: Integrating Glycogenomics, Glycoproteomics, Glycomics, and Other 'Omics Data Sets to Characterize Cellular Glycosylation Processes.

Bennun SV, Hizal DB, Heffner K, Can O, Zhang H, Betenbaugh MJ.

J Mol Biol. 2016 Aug 14;428(16):3337-3352. doi: 10.1016/j.jmb.2016.07.005. Epub 2016 Jul 15. Review.

PMID:
27423401
15.

CRISPR/Cas9-Multiplexed Editing of Chinese Hamster Ovary B4Gal-T1, 2, 3, and 4 Tailors N-Glycan Profiles of Therapeutics and Secreted Host Cell Proteins.

Amann T, Hansen AH, Kol S, Lee GM, Andersen MR, Kildegaard HF.

Biotechnol J. 2018 Oct;13(10):e1800111. doi: 10.1002/biot.201800111. Epub 2018 Jul 2.

PMID:
29862652
16.

Epithelial-to-Mesenchymal Transition of RPE Cells In Vitro Confers Increased β1,6-N-Glycosylation and Increased Susceptibility to Galectin-3 Binding.

Priglinger CS, Obermann J, Szober CM, Merl-Pham J, Ohmayer U, Behler J, Gruhn F, Kreutzer TC, Wertheimer C, Geerlof A, Priglinger SG, Hauck SM.

PLoS One. 2016 Jan 13;11(1):e0146887. doi: 10.1371/journal.pone.0146887. eCollection 2016.

17.

CRISPR-Cas9-based genome-wide screening of Toxoplasma gondii.

Sidik SM, Huet D, Lourido S.

Nat Protoc. 2018 Jan;13(1):307-323. doi: 10.1038/nprot.2017.131. Epub 2018 Jan 11.

18.

Genome Editing in Mice Using CRISPR/Cas9 Technology.

Hall B, Cho A, Limaye A, Cho K, Khillan J, Kulkarni AB.

Curr Protoc Cell Biol. 2018 Dec;81(1):e57. doi: 10.1002/cpcb.57. Epub 2018 Sep 4.

PMID:
30178917
19.

Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity.

North SJ, Huang HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, Chalabi S, Dell A, Stanley P, Haslam SM.

J Biol Chem. 2010 Feb 19;285(8):5759-75. doi: 10.1074/jbc.M109.068353. Epub 2009 Dec 1.

20.

Application of the CRISPR/Cas system for genome editing in microalgae.

Zhang YT, Jiang JY, Shi TQ, Sun XM, Zhao QY, Huang H, Ren LJ.

Appl Microbiol Biotechnol. 2019 Apr;103(8):3239-3248. doi: 10.1007/s00253-019-09726-x. Epub 2019 Mar 15. Review.

PMID:
30877356

Supplemental Content

Support Center