Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions.

Hoernes TP, Faserl K, Juen MA, Kremser J, Gasser C, Fuchs E, Shi X, Siewert A, Lindner H, Kreutz C, Micura R, Joseph S, Höbartner C, Westhof E, Hüttenhofer A, Erlacher MD.

Nat Commun. 2018 Nov 19;9(1):4865. doi: 10.1038/s41467-018-07321-8.

2.

Unconventional decoding of the AUA codon as methionine by mitochondrial tRNAMet with the anticodon f5CAU as revealed with a mitochondrial in vitro translation system.

Takemoto C, Spremulli LL, Benkowski LA, Ueda T, Yokogawa T, Watanabe K.

Nucleic Acids Res. 2009 Apr;37(5):1616-27. doi: 10.1093/nar/gkp001. Epub 2009 Jan 16.

3.

Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch: RNA-DEPENDENT CODON SELECTION OUTSIDE THE RIBOSOME.

Caserta E, Liu LC, Grundy FJ, Henkin TM.

J Biol Chem. 2015 Sep 18;290(38):23336-47. doi: 10.1074/jbc.M115.673236. Epub 2015 Jul 30.

4.

Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions.

Konevega AL, Soboleva NG, Makhno VI, Semenkov YP, Wintermeyer W, Rodnina MV, Katunin VI.

RNA. 2004 Jan;10(1):90-101.

5.

Recognition of the codon-anticodon helix by ribosomal RNA.

Yoshizawa S, Fourmy D, Puglisi JD.

Science. 1999 Sep 10;285(5434):1722-5.

6.
7.

A new understanding of the decoding principle on the ribosome.

Demeshkina N, Jenner L, Westhof E, Yusupov M, Yusupova G.

Nature. 2012 Mar 21;484(7393):256-9. doi: 10.1038/nature10913.

PMID:
22437501
8.

Kinetic basis for global loss of fidelity arising from mismatches in the P-site codon:anticodon helix.

Zaher HS, Green R.

RNA. 2010 Oct;16(10):1980-9. doi: 10.1261/rna.2241810. Epub 2010 Aug 19.

9.
10.

Energetics of codon-anticodon recognition on the small ribosomal subunit.

Almlöf M, Andér M, Aqvist J.

Biochemistry. 2007 Jan 9;46(1):200-9.

PMID:
17198390
11.
12.

Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding.

Vendeix FA, Dziergowska A, Gustilo EM, Graham WD, Sproat B, Malkiewicz A, Agris PF.

Biochemistry. 2008 Jun 10;47(23):6117-29. doi: 10.1021/bi702356j. Epub 2008 May 13.

PMID:
18473483
13.

The nucleotide in position 32 of the tRNA anticodon loop determines ability of anticodon UCC to discriminate among glycine codons.

Lustig F, Borén T, Claesson C, Simonsson C, Barciszewska M, Lagerkvist U.

Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3343-7.

14.

Wobble during decoding: more than third-position promiscuity.

Cochella L, Green R.

Nat Struct Mol Biol. 2004 Dec;11(12):1160-2. No abstract available.

PMID:
15578054
15.

The absence of A-to-I editing in the anticodon of plant cytoplasmic tRNA (Arg) ACG demands a relaxation of the wobble decoding rules.

Aldinger CA, Leisinger AK, Gaston KW, Limbach PA, Igloi GL.

RNA Biol. 2012 Oct;9(10):1239-46. doi: 10.4161/rna.21839. Epub 2012 Aug 24.

16.

tRNA's wobble decoding of the genome: 40 years of modification.

Agris PF, Vendeix FA, Graham WD.

J Mol Biol. 2007 Feb 9;366(1):1-13. Epub 2006 Nov 15. Review.

PMID:
17187822
18.
19.

The ribosome's response to codon-anticodon mismatches.

Daviter T, Gromadski KB, Rodnina MV.

Biochimie. 2006 Aug;88(8):1001-11. Epub 2006 May 12. Review.

PMID:
16716484
20.

Nucleotide modifications and tRNA anticodon-mRNA codon interactions on the ribosome.

Allnér O, Nilsson L.

RNA. 2011 Dec;17(12):2177-88. doi: 10.1261/rna.029231.111. Epub 2011 Oct 25.

Supplemental Content

Support Center