Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Web-Based Search Tool for Visualizing Instrument Performance Using the Triple Knockout (TKO) Proteome Standard.

Gygi JP, Yu Q, Navarrete-Perea J, Rad R, Gygi SP, Paulo JA.

J Proteome Res. 2019 Feb 1;18(2):687-693. doi: 10.1021/acs.jproteome.8b00737. Epub 2018 Nov 27.

2.

TKO6: A Peptide Standard To Assess Interference for Unit-Resolved Isobaric Labeling Platforms.

Paulo JA, Navarrete-Perea J, Guha Thakurta S, Gygi SP.

J Proteome Res. 2019 Jan 4;18(1):565-570. doi: 10.1021/acs.jproteome.8b00902. Epub 2018 Dec 6.

3.

A Triple Knockout (TKO) Proteomics Standard for Diagnosing Ion Interference in Isobaric Labeling Experiments.

Paulo JA, O'Connell JD, Gygi SP.

J Am Soc Mass Spectrom. 2016 Oct;27(10):1620-5. doi: 10.1007/s13361-016-1434-9. Epub 2016 Jul 11.

4.

MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes.

McAlister GC, Nusinow DP, Jedrychowski MP, Wühr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP.

Anal Chem. 2014 Jul 15;86(14):7150-8. doi: 10.1021/ac502040v. Epub 2014 Jul 3.

5.

Active Instrument Engagement Combined with a Real-Time Database Search for Improved Performance of Sample Multiplexing Workflows.

Erickson BK, Mintseris J, Schweppe DK, Navarrete-Perea J, Erickson AR, Nusinow DP, Paulo JA, Gygi SP.

J Proteome Res. 2019 Mar 1;18(3):1299-1306. doi: 10.1021/acs.jproteome.8b00899. Epub 2019 Feb 4.

PMID:
30658528
6.

Evaluating multiplexed quantitative phosphopeptide analysis on a hybrid quadrupole mass filter/linear ion trap/orbitrap mass spectrometer.

Erickson BK, Jedrychowski MP, McAlister GC, Everley RA, Kunz R, Gygi SP.

Anal Chem. 2015 Jan 20;87(2):1241-9. doi: 10.1021/ac503934f. Epub 2015 Jan 6.

7.

Investigating Acquisition Performance on the Orbitrap Fusion When Using Tandem MS/MS/MS Scanning with Isobaric Tags.

Hughes CS, Spicer V, Krokhin OV, Morin GB.

J Proteome Res. 2017 May 5;16(5):1839-1846. doi: 10.1021/acs.jproteome.7b00091. Epub 2017 Apr 20.

PMID:
28418257
8.

Accurate multiplexed proteomics at the MS2 level using the complement reporter ion cluster.

Wühr M, Haas W, McAlister GC, Peshkin L, Rad R, Kirschner MW, Gygi SP.

Anal Chem. 2012 Nov 6;84(21):9214-21. doi: 10.1021/ac301962s. Epub 2012 Oct 25.

9.

Evaluation of a Dual Isolation Width Acquisition Method for Isobaric Labeling Ratio Decompression.

Roumeliotis TI, Weisser H, Choudhary JS.

J Proteome Res. 2019 Mar 1;18(3):1433-1440. doi: 10.1021/acs.jproteome.8b00870. Epub 2019 Jan 3.

10.

Quantitative accuracy in mass spectrometry based proteomics of complex samples: the impact of labeling and precursor interference.

Sandberg A, Branca RM, Lehtiö J, Forshed J.

J Proteomics. 2014 Jan 16;96:133-44. doi: 10.1016/j.jprot.2013.10.035. Epub 2013 Nov 5.

11.

Comparison of Protein Quantification in a Complex Background by DIA and TMT Workflows with Fixed Instrument Time.

Muntel J, Kirkpatrick J, Bruderer R, Huang T, Vitek O, Ori A, Reiter L.

J Proteome Res. 2019 Mar 1;18(3):1340-1351. doi: 10.1021/acs.jproteome.8b00898. Epub 2019 Feb 20.

PMID:
30726097
12.

Extensive Peptide Fractionation and y1 Ion-Based Interference Detection Method for Enabling Accurate Quantification by Isobaric Labeling and Mass Spectrometry.

Niu M, Cho JH, Kodali K, Pagala V, High AA, Wang H, Wu Z, Li Y, Bi W, Zhang H, Wang X, Zou W, Peng J.

Anal Chem. 2017 Mar 7;89(5):2956-2963. doi: 10.1021/acs.analchem.6b04415. Epub 2017 Feb 22.

13.

High-performance hybrid Orbitrap mass spectrometers for quantitative proteome analysis: Observations and implications.

Williamson JC, Edwards AV, Verano-Braga T, Schwämmle V, Kjeldsen F, Jensen ON, Larsen MR.

Proteomics. 2016 Mar;16(6):907-14. doi: 10.1002/pmic.201400545. Epub 2016 Mar 1.

PMID:
26791339
14.

TomahaqCompanion: A Tool for the Creation and Analysis of Isobaric Label Based Multiplexed Targeted Assays.

Rose CM, Erickson BK, Schweppe DK, Viner R, Choi J, Rogers J, Bomgarden R, Gygi SP, Kirkpatrick DS.

J Proteome Res. 2019 Feb 1;18(2):594-605. doi: 10.1021/acs.jproteome.8b00767. Epub 2018 Dec 12.

PMID:
30501201
15.

Estimating influence of cofragmentation on peptide quantification and identification in iTRAQ experiments by simulating multiplexed spectra.

Li H, Hwang KB, Mun DG, Kim H, Lee H, Lee SW, Paek E.

J Proteome Res. 2014 Jul 3;13(7):3488-97. doi: 10.1021/pr500060d. Epub 2014 Jun 23.

PMID:
24918111
16.

Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster.

Sonnett M, Yeung E, Wühr M.

Anal Chem. 2018 Apr 17;90(8):5032-5039. doi: 10.1021/acs.analchem.7b04713. Epub 2018 Mar 30.

17.

Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources.

Paulo JA, O'Connell JD, Everley RA, O'Brien J, Gygi MA, Gygi SP.

J Proteomics. 2016 Oct 4;148:85-93. doi: 10.1016/j.jprot.2016.07.005. Epub 2016 Jul 16.

18.

iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics.

Mertins P, Udeshi ND, Clauser KR, Mani DR, Patel J, Ong SE, Jaffe JD, Carr SA.

Mol Cell Proteomics. 2012 Jun;11(6):M111.014423. doi: 10.1074/mcp.M111.014423. Epub 2011 Dec 30.

19.

MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics.

Ting L, Rad R, Gygi SP, Haas W.

Nat Methods. 2011 Oct 2;8(11):937-40. doi: 10.1038/nmeth.1714.

20.

Benchmarking stable isotope labeling based quantitative proteomics.

Altelaar AF, Frese CK, Preisinger C, Hennrich ML, Schram AW, Timmers HT, Heck AJ, Mohammed S.

J Proteomics. 2013 Aug 2;88:14-26. doi: 10.1016/j.jprot.2012.10.009. Epub 2012 Oct 22.

PMID:
23085607

Supplemental Content

Support Center