Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Global warming reduces leaf-out and flowering synchrony among individuals.

Zohner CM, Mo L, Renner SS.

Elife. 2018 Nov 12;7. pii: e40214. doi: 10.7554/eLife.40214.

2.

Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.

Marchin RM, Salk CF, Hoffmann WA, Dunn RR.

Glob Chang Biol. 2015 Aug;21(8):3138-51. doi: 10.1111/gcb.12919. Epub 2015 May 12.

PMID:
25736981
3.

Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut.

Fu YH, Piao S, Zhou X, Geng X, Hao F, Vitasse Y, Janssens IA.

Glob Chang Biol. 2019 May;25(5):1696-1703. doi: 10.1111/gcb.14599. Epub 2019 Mar 19.

PMID:
30779408
4.

From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.

Primack RB, Laube J, Gallinat AS, Menzel A.

Ann Bot. 2015 Nov;116(6):889-97. doi: 10.1093/aob/mcv032. Epub 2015 Apr 7.

5.

Plant phenological synchrony increases under rapid within-spring warming.

Wang C, Tang Y, Chen J.

Sci Rep. 2016 May 5;6:25460. doi: 10.1038/srep25460.

6.

Leaf-out phenology of temperate woody plants: from trees to ecosystems.

Polgar CA, Primack RB.

New Phytol. 2011 Sep;191(4):926-41. doi: 10.1111/j.1469-8137.2011.03803.x. Epub 2011 Jul 15. Review.

7.

Larger temperature response of autumn leaf senescence than spring leaf-out phenology.

Fu YH, Piao S, Delpierre N, Hao F, Hänninen H, Liu Y, Sun W, Janssens IA, Campioli M.

Glob Chang Biol. 2018 May;24(5):2159-2168. doi: 10.1111/gcb.14021. Epub 2018 Jan 4.

PMID:
29245174
8.

Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.

Posledovich D, Toftegaard T, Wiklund C, Ehrlén J, Gotthard K.

J Anim Ecol. 2018 Jan;87(1):150-161. doi: 10.1111/1365-2656.12770. Epub 2017 Nov 29.

PMID:
29048758
9.

Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species.

Chen L, Huang JG, Ma Q, Hänninen H, Tremblay F, Bergeron Y.

Glob Chang Biol. 2019 Mar;25(3):997-1004. doi: 10.1111/gcb.14496. Epub 2018 Nov 14.

PMID:
30358002
10.

Experimental warming advances phenology of groundlayer plants at the boreal-temperate forest ecotone.

Rice KE, Montgomery RA, Stefanski A, Rich RL, Reich PB.

Am J Bot. 2018 May;105(5):851-861. doi: 10.1002/ajb2.1091. Epub 2018 Jun 6.

11.

Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species.

Fu YS, Campioli M, Vitasse Y, De Boeck HJ, Van den Berge J, AbdElgawad H, Asard H, Piao S, Deckmyn G, Janssens IA.

Proc Natl Acad Sci U S A. 2014 May 20;111(20):7355-60. doi: 10.1073/pnas.1321727111. Epub 2014 May 5.

12.

Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range.

Dantec CF, Vitasse Y, Bonhomme M, Louvet JM, Kremer A, Delzon S.

Int J Biometeorol. 2014 Nov;58(9):1853-64. doi: 10.1007/s00484-014-0787-7. Epub 2014 Jan 23.

PMID:
24452386
13.

Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason.

Güsewell S, Furrer R, Gehrig R, Pietragalla B.

Glob Chang Biol. 2017 Dec;23(12):5189-5202. doi: 10.1111/gcb.13781. Epub 2017 Jul 6.

PMID:
28586135
14.
15.

Global warming leads to more uniform spring phenology across elevations.

Vitasse Y, Signarbieux C, Fu YH.

Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):1004-1008. doi: 10.1073/pnas.1717342115. Epub 2017 Dec 26.

16.

Nonlinear flowering responses to climate: are species approaching their limits of phenological change?

Iler AM, Høye TT, Inouye DW, Schmidt NM.

Philos Trans R Soc Lond B Biol Sci. 2013 Jul 8;368(1624):20120489. doi: 10.1098/rstb.2012.0489. Print 2013 Aug 19.

17.

Warming experiments underpredict plant phenological responses to climate change.

Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJ, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE.

Nature. 2012 May 2;485(7399):494-7. doi: 10.1038/nature11014.

PMID:
22622576
18.

Declining global warming effects on the phenology of spring leaf unfolding.

Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng Z, Janssens IA.

Nature. 2015 Oct 1;526(7571):104-7. doi: 10.1038/nature15402. Epub 2015 Sep 23.

PMID:
26416746
19.

Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.

Iler AM, Inouye DW, Høye TT, Miller-Rushing AJ, Burkle LA, Johnston EB.

Glob Chang Biol. 2013 Aug;19(8):2348-59. doi: 10.1111/gcb.12246. Epub 2013 May 29.

PMID:
23640772
20.

Climate drives phenological reassembly of a mountain wildflower meadow community.

Theobald EJ, Breckheimer I, HilleRisLambers J.

Ecology. 2017 Nov;98(11):2799-2812. doi: 10.1002/ecy.1996. Epub 2017 Oct 11.

PMID:
29023677

Supplemental Content

Support Center