Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100


Target site specificity and in vivo complexity of the mammalian arginylome.

Wang J, Pejaver VR, Dann GP, Wolf MY, Kellis M, Huang Y, Garcia BA, Radivojac P, Kashina A.

Sci Rep. 2018 Nov 1;8(1):16177. doi: 10.1038/s41598-018-34639-6.


Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays.

Wadas B, Piatkov KI, Brower CS, Varshavsky A.

J Biol Chem. 2016 Sep 30;291(40):20976-20992. Epub 2016 Aug 10.


Identification of mammalian arginyltransferases that modify a specific subset of protein substrates.

Rai R, Kashina A.

Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10123-8. Epub 2005 Jul 7.


Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo.

Wang J, Han X, Wong CC, Cheng H, Aslanian A, Xu T, Leavis P, Roder H, Hedstrom L, Yates JR 3rd, Kashina A.

Chem Biol. 2014 Mar 20;21(3):331-7. doi: 10.1016/j.chembiol.2013.12.017. Epub 2014 Feb 13.


Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms.

Hu RG, Brower CS, Wang H, Davydov IV, Sheng J, Zhou J, Kwon YT, Varshavsky A.

J Biol Chem. 2006 Oct 27;281(43):32559-73. Epub 2006 Aug 30.


Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats.

Brower CS, Rosen CE, Jones RH, Wadas BC, Piatkov KI, Varshavsky A.

Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4936-45. doi: 10.1073/pnas.1419587111. Epub 2014 Nov 4.


Arginyltransferase ATE1 is targeted to the neuronal growth cones and regulates neurite outgrowth during brain development.

Wang J, Pavlyk I, Vedula P, Sterling S, Leu NA, Dong DW, Kashina A.

Dev Biol. 2017 Oct 1;430(1):41-51. doi: 10.1016/j.ydbio.2017.08.027. Epub 2017 Aug 26.


Arginyltransferase suppresses cell tumorigenic potential and inversely correlates with metastases in human cancers.

Rai R, Zhang F, Colavita K, Leu NA, Kurosaka S, Kumar A, Birnbaum MD, Győrffy B, Dong DW, Shtutman M, Kashina A.

Oncogene. 2016 Aug 4;35(31):4058-68. doi: 10.1038/onc.2015.473. Epub 2015 Dec 21.


Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response.

Kumar A, Birnbaum MD, Patel DM, Morgan WM, Singh J, Barrientos A, Zhang F.

Cell Death Dis. 2016 Sep 29;7(9):e2378. doi: 10.1038/cddis.2016.284.


Ate1-mediated posttranslational arginylation affects substrate adhesion and cell migration in Dictyostelium discoideum.

Batsios P, Ishikawa-Ankerhold HC, Roth H, Schleicher M, Wong CCL, Müller-Taubenberger A.

Mol Biol Cell. 2019 Feb 15;30(4):453-466. doi: 10.1091/mbc.E18-02-0132. Epub 2018 Dec 26.


Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo.

Wang J, Han X, Saha S, Xu T, Rai R, Zhang F, Wolf YI, Wolfson A, Yates JR 3rd, Kashina A.

Chem Biol. 2011 Jan 28;18(1):121-30. doi: 10.1016/j.chembiol.2010.10.016.


Post-translational protein arginylation in the normal nervous system and in neurodegeneration.

Galiano MR, Goitea VE, Hallak ME.

J Neurochem. 2016 Aug;138(4):506-17. doi: 10.1111/jnc.13708. Epub 2016 Jul 5. Review.


Protein arginylation, a global biological regulator that targets actin cytoskeleton and the muscle.

Kashina A.

Anat Rec (Hoboken). 2014 Sep;297(9):1630-6. doi: 10.1002/ar.22969. Review.


Arginylation regulates myofibrils to maintain heart function and prevent dilated cardiomyopathy.

Kurosaka S, Leu NA, Pavlov I, Han X, Ribeiro PA, Xu T, Bunte R, Saha S, Wang J, Cornachione A, Mai W, Yates JR 3rd, Rassier DE, Kashina A.

J Mol Cell Cardiol. 2012 Sep;53(3):333-41. doi: 10.1016/j.yjmcc.2012.05.007. Epub 2012 May 21.


Arginylation-dependent neural crest cell migration is essential for mouse development.

Kurosaka S, Leu NA, Zhang F, Bunte R, Saha S, Wang J, Guo C, He W, Kashina A.

PLoS Genet. 2010 Mar 12;6(3):e1000878. doi: 10.1371/journal.pgen.1000878.


Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development.

Rai R, Wong CC, Xu T, Leu NA, Dong DW, Guo C, McLaughlin KJ, Yates JR 3rd, Kashina A.

Development. 2008 Dec;135(23):3881-9. doi: 10.1242/dev.022723. Epub 2008 Oct 23. Erratum in: Development. 2008 Dec;135(23):3971.


Loss of ATE1-mediated arginylation leads to impaired platelet myosin phosphorylation, clot retraction, and in vivo thrombosis formation.

Lian L, Suzuki A, Hayes V, Saha S, Han X, Xu T, Yates JR 3rd, Poncz M, Kashina A, Abrams CS.

Haematologica. 2014 Mar;99(3):554-60. doi: 10.3324/haematol.2013.093047. Epub 2013 Nov 29.


Molecular dissection of arginyltransferases guided by similarity to bacterial peptidoglycan synthases.

Rai R, Mushegian A, Makarova K, Kashina A.

EMBO Rep. 2006 Aug;7(8):800-5. Epub 2006 Jul 7.


Small molecule inhibitors of arginyltransferase regulate arginylation-dependent protein degradation, cell motility, and angiogenesis.

Saha S, Wang J, Buckley B, Wang Q, Lilly B, Chernov M, Kashina A.

Biochem Pharmacol. 2012 Apr 1;83(7):866-73. doi: 10.1016/j.bcp.2012.01.012. Epub 2012 Jan 18.

Supplemental Content

Support Center