Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Molecular features unique to glioblastoma radiation resistant residual cells may affect patient outcome - a short report.

Kaur E, Goda JS, Ghorai A, Salunkhe S, Shetty P, Moiyadi AV, Sridhar E, Mahajan A, Jalali R, Dutt S.

Cell Oncol (Dordr). 2018 Oct 26. doi: 10.1007/s13402-018-0411-7. [Epub ahead of print]

PMID:
30361826
2.

Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence.

Kaur E, Rajendra J, Jadhav S, Shridhar E, Goda JS, Moiyadi A, Dutt S.

Carcinogenesis. 2015 Jun;36(6):685-95. doi: 10.1093/carcin/bgv050. Epub 2015 Apr 11.

PMID:
25863126
3.

Enhanced proteasomal activity is essential for long term survival and recurrence of innately radiation resistant residual glioblastoma cells.

Rajendra J, Datta KK, Ud Din Farooqee SB, Thorat R, Kumar K, Gardi N, Kaur E, Nair J, Salunkhe S, Patkar K, Desai S, Goda JS, Moiyadi A, Dutt A, Venkatraman P, Gowda H, Dutt S.

Oncotarget. 2018 Jun 12;9(45):27667-27681. doi: 10.18632/oncotarget.25351. eCollection 2018 Jun 12.

4.

ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture.

Tribius S, Pidel A, Casper D.

Int J Radiat Oncol Biol Phys. 2001 Jun 1;50(2):511-23.

PMID:
11380241
5.

Intrinsic radiation sensitivity may not be the major determinant of the poor clinical outcome of glioblastoma multiforme.

Taghian A, Ramsay J, Allalunis-Turner J, Budach W, Gioioso D, Pardo F, Okunieff P, Bleehen N, Urtasun R, Suit H.

Int J Radiat Oncol Biol Phys. 1993 Jan 15;25(2):243-9.

PMID:
8380568
6.

Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase.

Carruthers R, Ahmed SU, Strathdee K, Gomez-Roman N, Amoah-Buahin E, Watts C, Chalmers AJ.

Mol Oncol. 2015 Jan;9(1):192-203. doi: 10.1016/j.molonc.2014.08.003. Epub 2014 Aug 24.

7.

In vivo radiation sensitivity of glioblastoma multiforme.

Taghian A, DuBois W, Budach W, Baumann M, Freeman J, Suit H.

Int J Radiat Oncol Biol Phys. 1995 Apr 30;32(1):99-104.

PMID:
7721644
8.
9.

A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses.

Gomez-Roman N, Stevenson K, Gilmour L, Hamilton G, Chalmers AJ.

Neuro Oncol. 2017 Feb 1;19(2):229-241. doi: 10.1093/neuonc/now164.

10.

β-elemene enhances both radiosensitivity and chemosensitivity of glioblastoma cells through the inhibition of the ATM signaling pathway.

Liu S, Zhou L, Zhao Y, Yuan Y.

Oncol Rep. 2015 Aug;34(2):943-51. doi: 10.3892/or.2015.4050. Epub 2015 Jun 11.

PMID:
26062577
11.

Downregulation of TES by hypermethylation in glioblastoma reduces cell apoptosis and predicts poor clinical outcome.

Bai Y, Zhang QG, Wang XH.

Eur J Med Res. 2014 Dec 11;19:66. doi: 10.1186/s40001-014-0066-4.

12.

[Potentials of DNA-PKcs, Ku80, and ATM in enhancing radiosensitivity of cervical carcinoma cells].

Zhuang L, Yu SY, Huang XY, Cao Y, Xiong HH.

Ai Zheng. 2007 Jul;26(7):724-9. Chinese.

PMID:
17626748
13.

ID1 affects the efficacy of radiotherapy in glioblastoma through inhibition of DNA repair pathways.

Guo Q, Guo P, Mao Q, Lan J, Lin Y, Jiang J, Qiu Y.

Med Oncol. 2013 Mar;30(1):325. doi: 10.1007/s12032-012-0325-6. Epub 2013 Feb 3.

PMID:
23377983
14.

MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway.

Yang CH, Wang Y, Sims M, Cai C, He P, Häcker H, Yue J, Cheng J, Boop FA, Pfeffer LM.

Oncotarget. 2017 Dec 6;8(68):112980-112991. doi: 10.18632/oncotarget.22945. eCollection 2017 Dec 22.

15.

ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells.

Nadkarni A, Shrivastav M, Mladek AC, Schwingler PM, Grogan PT, Chen J, Sarkaria JN.

J Neurooncol. 2012 Dec;110(3):349-57. doi: 10.1007/s11060-012-0979-0. Epub 2012 Oct 3.

16.

Investigation of serum levels and tissue expression of two genes IGFBP-2 and IGFBP-3 act as potential biomarker for predicting the progression and survival in patients with glioblastoma multiforme.

Abdolhoseinpour H, Mehrabi F, Shahraki K, Khoshnood RJ, Masoumi B, Yahaghi E, Goudarzi PK.

J Neurol Sci. 2016 Jul 15;366:202-206. doi: 10.1016/j.jns.2016.05.018. Epub 2016 May 14.

PMID:
27288807
17.

Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist.

Wang H, Cai S, Bailey BJ, Reza Saadatzadeh M, Ding J, Tonsing-Carter E, Georgiadis TM, Zachary Gunter T, Long EC, Minto RE, Gordon KR, Sen SE, Cai W, Eitel JA, Waning DL, Bringman LR, Wells CD, Murray ME, Sarkaria JN, Gelbert LM, Jones DR, Cohen-Gadol AA, Mayo LD, Shannon HE, Pollok KE.

J Neurosurg. 2017 Feb;126(2):446-459. doi: 10.3171/2016.1.JNS152513. Epub 2016 May 13.

18.

Expression of p53 and p21 in primary glioblastomas.

Gross MW, Kraus A, Nashwan K, Mennel HD, Engenhart-Cabillic R, Schlegel J.

Strahlenther Onkol. 2005 Mar;181(3):164-71.

PMID:
15756520
19.

Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells: prognostic significance and biological impact.

Fornara O, Bartek J Jr, Rahbar A, Odeberg J, Khan Z, Peredo I, Hamerlik P, Bartek J, Stragliotto G, Landázuri N, Söderberg-Nauclér C.

Cell Death Differ. 2016 Feb;23(2):261-9. doi: 10.1038/cdd.2015.91. Epub 2015 Jul 3.

20.

Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients.

Yong WH, Shabihkhani M, Telesca D, Yang S, Tso JL, Menjivar JC, Wei B, Lucey GM, Mareninov S, Chen Z, Liau LM, Lai A, Nelson SF, Cloughesy TF, Tso CL.

PLoS One. 2015 Oct 27;10(10):e0141334. doi: 10.1371/journal.pone.0141334. eCollection 2015.

Supplemental Content

Support Center