Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101


Structural and functional insights into the regulation of the lysis-lysogeny decision in viral communities.

Dou C, Xiong J, Gu Y, Yin K, Wang J, Hu Y, Zhou D, Fu X, Qi S, Zhu X, Yao S, Xu H, Nie C, Liang Z, Yang S, Wei Y, Cheng W.

Nat Microbiol. 2018 Nov;3(11):1285-1294. doi: 10.1038/s41564-018-0259-7. Epub 2018 Oct 15.


Structural basis of the arbitrium peptide-AimR communication system in the phage lysis-lysogeny decision.

Wang Q, Guan Z, Pei K, Wang J, Liu Z, Yin P, Peng D, Zou T.

Nat Microbiol. 2018 Nov;3(11):1266-1273. doi: 10.1038/s41564-018-0239-y. Epub 2018 Sep 17.


Communication between viruses guides lysis-lysogeny decisions.

Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R.

Nature. 2017 Jan 26;541(7638):488-493. doi: 10.1038/nature21049. Epub 2017 Jan 18.


Variability and host density independence in inductions-based estimates of environmental lysogeny.

Knowles B, Bailey B, Boling L, Breitbart M, Cobián-Güemes A, Del Campo J, Edwards R, Felts B, Grasis J, Haas AF, Katira P, Kelly LW, Luque A, Nulton J, Paul L, Peters G, Robinett N, Sandin S, Segall A, Silveira C, Youle M, Rohwer F.

Nat Microbiol. 2017 Apr 28;2:17064. doi: 10.1038/nmicrobiol.2017.64.


In silico Evolution of Lysis-Lysogeny Strategies Reproduces Observed Lysogeny Propensities in Temperate Bacteriophages.

Sinha V, Goyal A, Svenningsen SL, Semsey S, Krishna S.

Front Microbiol. 2017 Jul 26;8:1386. doi: 10.3389/fmicb.2017.01386. eCollection 2017.


Diversity of phage infection types and associated terminology: the problem with 'Lytic or lysogenic'.

Hobbs Z, Abedon ST.

FEMS Microbiol Lett. 2016 Apr;363(7). pii: fnw047. doi: 10.1093/femsle/fnw047. Epub 2016 Feb 29. Review.


Lysis-lysogeny coexistence: prophage integration during lytic development.

Shao Q, Trinh JT, McIntosh CS, Christenson B, Balázsi G, Zeng L.

Microbiologyopen. 2017 Feb;6(1). doi: 10.1002/mbo3.395. Epub 2016 Aug 17.


Molecular characterization and lytic activities of Streptococcus agalactiae bacteriophages and determination of lysogenic-strain features.

Domelier AS, van der Mee-Marquet N, Sizaret PY, Héry-Arnaud G, Lartigue MF, Mereghetti L, Quentin R.

J Bacteriol. 2009 Aug;191(15):4776-85. doi: 10.1128/JB.00426-09. Epub 2009 May 22.


Commitment to lysogeny is preceded by a prolonged period of sensitivity to the late lytic regulator Q in bacteriophage λ.

Svenningsen SL, Semsey S.

J Bacteriol. 2014 Oct;196(20):3582-8. doi: 10.1128/JB.01705-14. Epub 2014 Aug 4.


Enterococcal Bacteriophages and Genome Defense.

Duerkop BA, Palmer KL, Horsburgh MJ.

In: Gilmore MS, Clewell DB, Ike Y, Shankar N, editors. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]. Boston: Massachusetts Eye and Ear Infirmary; 2014-.
2014 Feb 11.


Transcriptional analysis of the genetic elements involved in the lysogeny/lysis switch in the temperate lactococcal bacteriophage phiLC3, and identification of the Cro-like protein ORF76.

Blatny JM, Ventura M, Rosenhaven EM, Risøen PA, Lunde M, Brüssow H, Nes IF.

Mol Genet Genomics. 2003 Jul;269(4):487-98. Epub 2003 May 21.


Population Dynamics of Phage and Bacteria in Spatially Structured Habitats Using Phage λ and Escherichia coli.

Mitarai N, Brown S, Sneppen K.

J Bacteriol. 2016 May 27;198(12):1783-93. doi: 10.1128/JB.00965-15. Print 2016 Jun 15.


Lysogeny in nature: mechanisms, impact and ecology of temperate phages.

Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB.

ISME J. 2017 Jul;11(7):1511-1520. doi: 10.1038/ismej.2017.16. Epub 2017 Mar 14.


Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC.

Shin H, Lee JH, Yoon H, Kang DH, Ryu S.

Appl Environ Microbiol. 2014 Jan;80(1):374-84. doi: 10.1128/AEM.02279-13. Epub 2013 Nov 1.


Studies on Escherichia coli HflKC suggest the presence of an unidentified λ factor that influences the lysis-lysogeny switch.

Bandyopadhyay K, Parua PK, Datta AB, Parrack P.

BMC Microbiol. 2011 Feb 17;11:34. doi: 10.1186/1471-2180-11-34.


Switches in bacteriophage lambda development.

Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S.

Annu Rev Genet. 2005;39:409-29. Review.


Molecular prediction of lytic vs lysogenic states for Microcystis phage: Metatranscriptomic evidence of lysogeny during large bloom events.

Stough JMA, Tang X, Krausfeldt LE, Steffen MM, Gao G, Boyer GL, Wilhelm SW.

PLoS One. 2017 Sep 5;12(9):e0184146. doi: 10.1371/journal.pone.0184146. eCollection 2017.


[Molecular mechanism of the integration and lysis of mycobacteriophage].

Shen YJ, Hu CH, Wang HH, Xie JP.

Wei Sheng Wu Xue Bao. 2005 Oct;45(5):808-11. Chinese.


The temperate Burkholderia phage AP3 of the Peduovirinae shows efficient antimicrobial activity against B. cenocepacia of the IIIA lineage.

Roszniowski B, Latka A, Maciejewska B, Vandenheuvel D, Olszak T, Briers Y, Holt GS, Valvano MA, Lavigne R, Smith DL, Drulis-Kawa Z.

Appl Microbiol Biotechnol. 2017 Feb;101(3):1203-1216. doi: 10.1007/s00253-016-7924-7. Epub 2016 Oct 21.


Lytic to temperate switching of viral communities.

Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobián-Güemes AG, Coutinho FH, Dinsdale EA, Felts B, Furby KA, George EE, Green KT, Gregoracci GB, Haas AF, Haggerty JM, Hester ER, Hisakawa N, Kelly LW, Lim YW, Little M, Luque A, McDole-Somera T, McNair K, de Oliveira LS, Quistad SD, Robinett NL, Sala E, Salamon P, Sanchez SE, Sandin S, Silva GG, Smith J, Sullivan C, Thompson C, Vermeij MJ, Youle M, Young C, Zgliczynski B, Brainard R, Edwards RA, Nulton J, Thompson F, Rohwer F.

Nature. 2016 Mar 24;531(7595):466-70. doi: 10.1038/nature17193. Epub 2016 Mar 16. Erratum in: Nature. 2016 Nov 3;539(7627):123.


Supplemental Content

Support Center