Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus.

Richard M, Gutiérrez AV, Viljoen A, Rodriguez-Rincon D, Roquet-Baneres F, Blaise M, Everall I, Parkhill J, Floto RA, Kremer L.

Antimicrob Agents Chemother. 2018 Dec 21;63(1). pii: e01316-18. doi: 10.1128/AAC.01316-18. Print 2019 Jan.

2.

Novel Mutations Associated with Clofazimine Resistance in Mycobacterium abscessus.

Chen Y, Chen J, Zhang S, Shi W, Zhang W, Zhu M, Zhang Y.

Antimicrob Agents Chemother. 2018 Jun 26;62(7). pii: e00544-18. doi: 10.1128/AAC.00544-18. Print 2018 Jul.

3.

Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis.

Almeida D, Ioerger T, Tyagi S, Li SY, Mdluli K, Andries K, Grosset J, Sacchettini J, Nuermberger E.

Antimicrob Agents Chemother. 2016 Jul 22;60(8):4590-9. doi: 10.1128/AAC.00753-16. Print 2016 Aug.

4.

Resistance to Thiacetazone Derivatives Active against Mycobacterium abscessus Involves Mutations in the MmpL5 Transcriptional Repressor MAB_4384.

Halloum I, Viljoen A, Khanna V, Craig D, Bouchier C, Brosch R, Coxon G, Kremer L.

Antimicrob Agents Chemother. 2017 Mar 24;61(4). pii: e02509-16. doi: 10.1128/AAC.02509-16. Print 2017 Apr.

5.

Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis.

Hartkoorn RC, Uplekar S, Cole ST.

Antimicrob Agents Chemother. 2014 May;58(5):2979-81. doi: 10.1128/AAC.00037-14. Epub 2014 Mar 3.

6.

Mechanistic and Structural Insights Into the Unique TetR-Dependent Regulation of a Drug Efflux Pump in Mycobacterium abscessus.

Richard M, Gutiérrez AV, Viljoen AJ, Ghigo E, Blaise M, Kremer L.

Front Microbiol. 2018 Apr 5;9:649. doi: 10.3389/fmicb.2018.00649. eCollection 2018.

7.

A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria.

Ruth MM, Sangen JJN, Remmers K, Pennings LJ, Svensson E, Aarnoutse RE, Zweijpfenning SMH, Hoefsloot W, Kuipers S, Magis-Escurra C, Wertheim HFL, van Ingen J.

J Antimicrob Chemother. 2019 Apr 1;74(4):935-943. doi: 10.1093/jac/dky526.

PMID:
30649327
8.

Determination of MIC Distribution and Mechanisms of Decreased Susceptibility to Bedaquiline among Clinical Isolates of Mycobacterium abscessus.

Li B, Ye M, Guo Q, Zhang Z, Yang S, Ma W, Yu F, Chu H.

Antimicrob Agents Chemother. 2018 Jun 26;62(7). pii: e00175-18. doi: 10.1128/AAC.00175-18. Print 2018 Jul.

9.

In vitro approaches for generation of Mycobacterium tuberculosis mutants resistant to bedaquiline, clofazimine or linezolid and identification of associated genetic variants.

Ismail N, Omar SV, Ismail NA, Peters RPH.

J Microbiol Methods. 2018 Oct;153:1-9. doi: 10.1016/j.mimet.2018.08.011. Epub 2018 Aug 28.

PMID:
30165087
10.

Primary Clofazimine and Bedaquiline Resistance among Isolates from Patients with Multidrug-Resistant Tuberculosis.

Xu J, Wang B, Hu M, Huo F, Guo S, Jing W, Nuermberger E, Lu Y.

Antimicrob Agents Chemother. 2017 May 24;61(6). pii: e00239-17. doi: 10.1128/AAC.00239-17. Print 2017 Jun.

11.

Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and Is Effective in Infected Zebrafish.

Dupont C, Viljoen A, Thomas S, Roquet-Banères F, Herrmann JL, Pethe K, Kremer L.

Antimicrob Agents Chemother. 2017 Oct 24;61(11). pii: e01225-17. doi: 10.1128/AAC.01225-17. Print 2017 Nov.

12.

Susceptibility of Mycobacterium abscessus to antimycobacterial drugs in preclinical models.

Obregón-Henao A, Arnett KA, Henao-Tamayo M, Massoudi L, Creissen E, Andries K, Lenaerts AJ, Ordway DJ.

Antimicrob Agents Chemother. 2015 Nov;59(11):6904-12. doi: 10.1128/AAC.00459-15. Epub 2015 Aug 24.

13.

Verapamil Increases the Bioavailability and Efficacy of Bedaquiline but Not Clofazimine in a Murine Model of Tuberculosis.

Xu J, Tasneen R, Peloquin CA, Almeida DV, Li SY, Barnes-Boyle K, Lu Y, Nuermberger E.

Antimicrob Agents Chemother. 2017 Dec 21;62(1). pii: e01692-17. doi: 10.1128/AAC.01692-17. Print 2018 Jan.

14.

Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591.

Rominski A, Roditscheff A, Selchow P, Böttger EC, Sander P.

J Antimicrob Chemother. 2017 Feb;72(2):376-384. doi: 10.1093/jac/dkw466. Epub 2016 Dec 20.

PMID:
27999011
15.

Clofazimine Exposure In Vitro Selects Efflux Pump Mutants and Bedaquiline Resistance.

Ismail N, Peters RPH, Ismail NA, Omar SV.

Antimicrob Agents Chemother. 2019 Feb 26;63(3). pii: e02141-18. doi: 10.1128/AAC.02141-18. Print 2019 Mar.

PMID:
30642938
16.

Molecular Mechanisms of Intrinsic Streptomycin Resistance in Mycobacterium abscessus.

Dal Molin M, Gut M, Rominski A, Haldimann K, Becker K, Sander P.

Antimicrob Agents Chemother. 2017 Dec 21;62(1). pii: e01427-17. doi: 10.1128/AAC.01427-17. Print 2018 Jan.

17.

In Vitro Activity of Clofazimine against Nontuberculous Mycobacteria Isolated in Beijing, China.

Luo J, Yu X, Jiang G, Fu Y, Huo F, Ma Y, Wang F, Shang Y, Liang Q, Xue Y, Huang H.

Antimicrob Agents Chemother. 2018 Jun 26;62(7). pii: e00072-18. doi: 10.1128/AAC.00072-18. Print 2018 Jul.

18.

Collated data of mutation frequencies and associated genetic variants of bedaquiline, clofazimine and linezolid resistance in Mycobacterium tuberculosis.

Ismail N, Omar SV, Ismail NA, Peters RPH.

Data Brief. 2018 Sep 24;20:1975-1983. doi: 10.1016/j.dib.2018.09.057. eCollection 2018 Oct.

19.

In Vitro Drug Susceptibility of Bedaquiline, Delamanid, Linezolid, Clofazimine, Moxifloxacin, and Gatifloxacin against Extensively Drug-Resistant Tuberculosis in Beijing, China.

Pang Y, Zong Z, Huo F, Jing W, Ma Y, Dong L, Li Y, Zhao L, Fu Y, Huang H.

Antimicrob Agents Chemother. 2017 Sep 22;61(10). pii: e00900-17. doi: 10.1128/AAC.00900-17. Print 2017 Oct.

20.

Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline.

Villellas C, Coeck N, Meehan CJ, Lounis N, de Jong B, Rigouts L, Andries K.

J Antimicrob Chemother. 2017 Mar 1;72(3):684-690. doi: 10.1093/jac/dkw502.

Supplemental Content

Support Center