Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Identification of KLF9 and BCL3 as transcription factors that enhance reprogramming of primordial germ cells.

Otsuka K, Takehara A, Chiba N, Matsui Y.

PLoS One. 2018 Oct 4;13(10):e0205004. doi: 10.1371/journal.pone.0205004. eCollection 2018.

2.

bFGF signaling-mediated reprogramming of porcine primordial germ cells.

Zhang Y, Ma J, Li H, Lv J, Wei R, Cong Y, Liu Z.

Cell Tissue Res. 2016 May;364(2):429-41. doi: 10.1007/s00441-015-2326-1. Epub 2015 Nov 27.

PMID:
26613602
3.

The majority of early primordial germ cells acquire pluripotency by AKT activation.

Matsui Y, Takehara A, Tokitake Y, Ikeda M, Obara Y, Morita-Fujimura Y, Kimura T, Nakano T.

Development. 2014 Dec;141(23):4457-67. doi: 10.1242/dev.113779. Epub 2014 Oct 30.

4.

Basic fibroblast growth factor is critical to reprogramming buffalo (Bubalus bubalis) primordial germ cells into embryonic germ stem cell-like cells.

Wang C, Deng Y, Chen F, Zhu P, Wei J, Luo C, Lu F, Yang S, Shi D.

Theriogenology. 2017 Mar 15;91:112-120. doi: 10.1016/j.theriogenology.2016.12.035. Epub 2016 Dec 29.

PMID:
28215675
5.

Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds.

Kimura T, Kaga Y, Sekita Y, Fujikawa K, Nakatani T, Odamoto M, Funaki S, Ikawa M, Abe K, Nakano T.

Stem Cells. 2015 Jan;33(1):45-55. doi: 10.1002/stem.1838.

6.

Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells.

Bazley FA, Liu CF, Yuan X, Hao H, All AH, De Los Angeles A, Zambidis ET, Gearhart JD, Kerr CL.

Stem Cells Dev. 2015 Nov 15;24(22):2634-48. doi: 10.1089/scd.2015.0100. Epub 2015 Aug 10.

7.

Integrative Analysis of the Acquisition of Pluripotency in PGCs Reveals the Mutually Exclusive Roles of Blimp-1 and AKT Signaling.

Nagamatsu G, Saito S, Takubo K, Suda T.

Stem Cell Reports. 2015 Jul 14;5(1):111-24. doi: 10.1016/j.stemcr.2015.05.007. Epub 2015 Jun 4.

8.

Differences and similarities in the developmental status of embryo-derived stem cells and primordial germ cells revealed by global expression profiling.

Mise N, Fuchikami T, Sugimoto M, Kobayakawa S, Ike F, Ogawa T, Tada T, Kanaya S, Noce T, Abe K.

Genes Cells. 2008 Aug;13(8):863-77. doi: 10.1111/j.1365-2443.2008.01211.x.

9.

Induction of pluripotency in primordial germ cells.

Kimura T, Nakano T.

Histol Histopathol. 2011 May;26(5):643-50. doi: 10.14670/HH-26.643. Review.

PMID:
21432780
10.

Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells.

Hayashi Y, Otsuka K, Ebina M, Igarashi K, Takehara A, Matsumoto M, Kanai A, Igarashi K, Soga T, Matsui Y.

Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8289-8294. doi: 10.1073/pnas.1620915114. Epub 2017 Jul 17. Erratum in: Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):E7232.

11.

Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro.

Hayashi K, Surani MA.

Development. 2009 Nov;136(21):3549-56. doi: 10.1242/dev.037747. Epub 2009 Sep 30.

12.

Reprogramming of germ cells into pluripotency.

Sekita Y, Nakamura T, Kimura T.

World J Stem Cells. 2016 Aug 26;8(8):251-9. doi: 10.4252/wjsc.v8.i8.251. Review.

13.

Hypoxia induces pluripotency in primordial germ cells by HIF1α stabilization and Oct4 deregulation.

López-Iglesias P, Alcaina Y, Tapia N, Sabour D, Arauzo-Bravo MJ, Sainz de la Maza D, Berra E, O'Mara AN, Nistal M, Ortega S, Donovan PJ, Schöler HR, De Miguel MP.

Antioxid Redox Signal. 2015 Jan 20;22(3):205-23. doi: 10.1089/ars.2014.5871. Epub 2014 Oct 30.

PMID:
25226357
14.

In or out stemness: comparing growth factor signalling in mouse embryonic stem cells and primordial germ cells.

De Felici M, Farini D, Dolci S.

Curr Stem Cell Res Ther. 2009 May;4(2):87-97. Review.

PMID:
19442193
15.

Efficient induction of pluripotency in primordial germ cells by dual inhibition of TGF-β and ERK signaling pathways.

Attari F, Sepehri H, Ansari H, Hassani SN, Esfandiari F, Asgari B, Shahverdi A, Baharvand H.

Stem Cells Dev. 2014 May 15;23(10):1050-61. doi: 10.1089/scd.2013.0438. Epub 2014 Feb 20.

PMID:
24382167
16.

Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile.

Sugawa F, Araúzo-Bravo MJ, Yoon J, Kim KP, Aramaki S, Wu G, Stehling M, Psathaki OE, Hübner K, Schöler HR.

EMBO J. 2015 Apr 15;34(8):1009-24. doi: 10.15252/embj.201488049. Epub 2015 Mar 6.

17.

Reprogramming primordial germ cells into pluripotent stem cells.

Durcova-Hills G, Tang F, Doody G, Tooze R, Surani MA.

PLoS One. 2008;3(10):e3531. doi: 10.1371/journal.pone.0003531. Epub 2008 Oct 27.

18.

Nuclear reprogramming in mouse primordial germ cells: epigenetic contribution.

De Felici M.

Stem Cells Int. 2011;2011:425863. doi: 10.4061/2011/425863. Epub 2011 Sep 29.

19.

Genome-wide profiling of pluripotent cells reveals a unique molecular signature of human embryonic germ cells.

Pashai N, Hao H, All A, Gupta S, Chaerkady R, De Los Angeles A, Gearhart JD, Kerr CL.

PLoS One. 2012;7(6):e39088. doi: 10.1371/journal.pone.0039088. Epub 2012 Jun 21.

20.

The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells.

Durcova-Hills G, Adams IR, Barton SC, Surani MA, McLaren A.

Stem Cells. 2006 Jun;24(6):1441-9.

Supplemental Content

Support Center