Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Unusually Strong Electrochemiluminescence from Iridium-Based Redox Polymers Immobilized As Thin Layers or Polymer Nanoparticles.

Carrara S, Stringer B, Shokouhi A, Ramkissoon P, Agugiaro J, Wilson DJD, Barnard PJ, Hogan CF.

ACS Appl Mater Interfaces. 2018 Oct 31;10(43):37251-37257. doi: 10.1021/acsami.8b12995. Epub 2018 Oct 16.

PMID:
30278121
2.

Cyclometalated iridium(III) chelates-a new exceptional class of the electrochemiluminescent luminophores.

Kapturkiewicz A.

Anal Bioanal Chem. 2016 Oct;408(25):7013-33. doi: 10.1007/s00216-016-9615-8. Epub 2016 Jun 2. Review.

3.

Recent Advances in Aggregation-Induced Electrochemiluminescence.

Yan H, Wei X, Zhu MJ, Xu JJ, Lu C.

Chemistry. 2019 Jul 8. doi: 10.1002/chem.201902465. [Epub ahead of print]

PMID:
31283848
4.

Highly efficient electrochemiluminescence labels comprising iridium(iii) complexes.

Zhou Y, Xie K, Leng R, Kong L, Liu C, Zhang Q, Wang X.

Dalton Trans. 2017 Jan 3;46(2):355-363. doi: 10.1039/c6dt04038a.

PMID:
27996065
5.

A "switch-on" photoluminescent and electrochemiluminescent multisignal probe for hypochlorite via a cyclometalated iridium complex.

Han D, Qian M, Gao H, Wang B, Qi H, Zhang C.

Anal Chim Acta. 2019 Oct 3;1074:98-107. doi: 10.1016/j.aca.2019.05.023. Epub 2019 May 16.

PMID:
31159944
6.

Aggregation-Induced Electrochemiluminescence from a Cyclometalated Iridium(III) Complex.

Gao TB, Zhang JJ, Yan RQ, Cao DK, Jiang D, Ye D.

Inorg Chem. 2018 Apr 16;57(8):4310-4316. doi: 10.1021/acs.inorgchem.7b03093. Epub 2018 Apr 2.

PMID:
29608289
7.
8.

Highly efficient electrochemiluminescence from iridium(III) complexes with 2-phenylquinoline ligand.

Zhou Y, Li W, Yu L, Liu Y, Wang X, Zhou M.

Dalton Trans. 2015 Jan 28;44(4):1858-65. doi: 10.1039/c4dt02809k.

PMID:
25482203
9.

Photophysics and Electrochemiluminescence of Bright Cyclometalated Ir(III) Complexes in Aqueous Solutions.

Fernandez-Hernandez JM, Longhi E, Cysewski R, Polo F, Josel HP, De Cola L.

Anal Chem. 2016 Apr 19;88(8):4174-8. doi: 10.1021/acs.analchem.6b00312. Epub 2016 Mar 28.

PMID:
26978720
10.

Why were alternating-current-driven electrochemiluminescence properties from Ru(bpy)3(2+) dramatically improved by the addition of titanium dioxide nanoparticles?

Tsuneyasu S, Ichihara K, Nakamura K, Kobayashi N.

Phys Chem Chem Phys. 2016 Jun 28;18(24):16317-24. doi: 10.1039/c6cp02881k. Epub 2016 Jun 2.

PMID:
27253475
11.

Synthesis, characterization, and photophysical and electroluminescent properties of blue-emitting cationic iridium(III) complexes bearing nonconjugated ligands.

Zhang F, Ma D, Duan L, Qiao J, Dong G, Wang L, Qiu Y.

Inorg Chem. 2014 Jul 7;53(13):6596-606. doi: 10.1021/ic5001733. Epub 2014 Jun 10.

PMID:
24914469
12.

Cationic heteroleptic cyclometalated iridium complexes with 1-pyridylimidazo[1,5-alpha]pyridine ligands: exploitation of an efficient intersystem crossing.

Volpi G, Garino C, Salassa L, Fiedler J, Hardcastle KI, Gobetto R, Nervi C.

Chemistry. 2009 Jun 22;15(26):6415-27. doi: 10.1002/chem.200801474.

PMID:
19462384
13.

Enhancing the luminescence properties and stability of cationic iridium(III) complexes based on phenylbenzoimidazole ligand: a combined experimental and theoretical study.

Shan GG, Li HB, Sun HZ, Cao HT, Zhu DX, Su ZM.

Dalton Trans. 2013 Aug 21;42(31):11056-65. doi: 10.1039/c3dt50358e.

PMID:
23598946
14.

Effect of surface immobilization on the electrochemiluminescence of ruthenium-containing metallopolymers.

Dennany L, Hogan CF, Keyes TE, Forster RJ.

Anal Chem. 2006 Mar 1;78(5):1412-7.

PMID:
16503588
15.

Donor-Acceptor Conjugated Polymer Dots for Tunable Electrochemiluminescence Activated by Aggregation-Induced Emission-Active Moieties.

Wang Z, Feng Y, Wang N, Cheng Y, Quan Y, Ju H.

J Phys Chem Lett. 2018 Sep 20;9(18):5296-5302. doi: 10.1021/acs.jpclett.8b02087. Epub 2018 Sep 4.

PMID:
30157647
16.

Iridium(III) emitters based on 1,4-disubstituted-1H-1,2,3-triazoles as cyclometalating ligand: synthesis, characterization, and electroluminescent devices.

Fernández-Hernández JM, Beltrán JI, Lemaur V, Gálvez-López MD, Chien CH, Polo F, Orselli E, Fröhlich R, Cornil J, De Cola L.

Inorg Chem. 2013 Feb 18;52(4):1812-24. doi: 10.1021/ic3018419. Epub 2013 Feb 5.

PMID:
23383706
17.

A sensitive immunosensor via in situ enzymatically generating efficient quencher for electrochemiluminescence of iridium complexes doped SiO2 nanoparticles.

Liang W, Zhuo Y, Xiong C, Zheng Y, Chai Y, Yuan R.

Biosens Bioelectron. 2017 Aug 15;94:568-574. doi: 10.1016/j.bios.2017.03.056. Epub 2017 Mar 27.

PMID:
28364703
18.

A cyclometalated iridium(III) complex with enhanced phosphorescence emission in the solid state (EPESS): synthesis, characterization and its application in bioimaging.

Wu H, Yang T, Zhao Q, Zhou J, Li C, Li F.

Dalton Trans. 2011 Mar 7;40(9):1969-76. doi: 10.1039/c0dt01366h. Epub 2011 Jan 31.

PMID:
21283860
19.

Silole-Containing Polymer Nanodot: An Aqueous Low-Potential Electrochemiluminescence Emitter for Biosensing.

Feng Y, Dai C, Lei J, Ju H, Cheng Y.

Anal Chem. 2016 Jan 5;88(1):845-50. doi: 10.1021/acs.analchem.5b03391. Epub 2015 Dec 10.

PMID:
26613322
20.

Aggregation-Induced Electrochemiluminescence of Carboranyl Carbazoles in Aqueous Media.

Wei X, Zhu MJ, Cheng Z, Lee M, Yan H, Lu C, Xu JJ.

Angew Chem Int Ed Engl. 2019 Mar 4;58(10):3162-3166. doi: 10.1002/anie.201900283. Epub 2019 Feb 14.

PMID:
30698911

Supplemental Content

Support Center