Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124


Selective Cleavage of Lignin β-O-4 Aryl Ether Bond by β-Etherase of the White-Rot Fungus Dichomitus squalens.

Marinović M, Nousiainen P, Dilokpimol A, Kontro J, Moore R, Sipilä J, de Vries RP, Mäkelä MR, Hildén K.

ACS Sustain Chem Eng. 2018 Mar 5;6(3):2878-2882. doi: 10.1021/acssuschemeng.7b03619. Epub 2018 Jan 25.


In Vitro Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units.

Gall DL, Kontur WS, Lan W, Kim H, Li Y, Ralph J, Donohue TJ, Noguera DR.

Appl Environ Microbiol. 2018 Jan 17;84(3). pii: e02076-17. doi: 10.1128/AEM.02076-17. Print 2018 Feb 1.


Multi-step biocatalytic depolymerization of lignin.

Picart P, Liu H, Grande PM, Anders N, Zhu L, Klankermayer J, Leitner W, Domínguez de María P, Schwaneberg U, Schallmey A.

Appl Microbiol Biotechnol. 2017 Aug;101(15):6277-6287. doi: 10.1007/s00253-017-8360-z. Epub 2017 Jun 21.


From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization.

Picart P, de María PD, Schallmey A.

Front Microbiol. 2015 Sep 4;6:916. doi: 10.3389/fmicb.2015.00916. eCollection 2015. Review.


A group of sequence-related sphingomonad enzymes catalyzes cleavage of β-aryl ether linkages in lignin β-guaiacyl and β-syringyl ether dimers.

Gall DL, Ralph J, Donohue TJ, Noguera DR.

Environ Sci Technol. 2014 Oct 21;48(20):12454-63. doi: 10.1021/es503886d. Epub 2014 Oct 1.


Stereochemical features of glutathione-dependent enzymes in the Sphingobium sp. strain SYK-6 β-aryl etherase pathway.

Gall DL, Kim H, Lu F, Donohue TJ, Noguera DR, Ralph J.

J Biol Chem. 2014 Mar 21;289(12):8656-67. doi: 10.1074/jbc.M113.536250. Epub 2014 Feb 7.


A heterodimeric glutathione S-transferase that stereospecifically breaks lignin's β(R)-aryl ether bond reveals the diversity of bacterial β-etherases.

Kontur WS, Olmsted CN, Yusko LM, Niles AV, Walters KA, Beebe ET, Vander Meulen KA, Karlen SD, Gall DL, Noguera DR, Donohue TJ.

J Biol Chem. 2019 Feb 8;294(6):1877-1890. doi: 10.1074/jbc.RA118.006548. Epub 2018 Dec 12.


A bacterial enzyme degrading the model lignin compound beta-etherase is a member of the glutathione-S-transferase superfamily.

Masai E, Katayama Y, Kubota S, Kawai S, Yamasaki M, Morohoshi N.

FEBS Lett. 1993 May 24;323(1-2):135-40.


Novosphingobium aromaticivorans uses a Nu-class glutathione S-transferase as a glutathione lyase in breaking the β-aryl ether bond of lignin.

Kontur WS, Bingman CA, Olmsted CN, Wassarman DR, Ulbrich A, Gall DL, Smith RW, Yusko LM, Fox BG, Noguera DR, Coon JJ, Donohue TJ.

J Biol Chem. 2018 Apr 6;293(14):4955-4968. doi: 10.1074/jbc.RA117.001268. Epub 2018 Feb 15.


Biodegradation of chestnut shell and lignin-modifying enzymes production by the white-rot fungi Dichomitus squalens, Phlebia radiata.

Dong YC, Dai YN, Xu TY, Cai J, Chen QH.

Bioprocess Biosyst Eng. 2014 May;37(5):755-64. doi: 10.1007/s00449-013-1045-9. Epub 2013 Sep 8.


Rapid characterization of the activities of lignin-modifying enzymes based on nanostructure-initiator mass spectrometry (NIMS).

Deng K, Zeng J, Cheng G, Gao J, Sale KL, Simmons BA, Singh AK, Adams PD, Northen TR.

Biotechnol Biofuels. 2018 Sep 27;11:266. doi: 10.1186/s13068-018-1261-2. eCollection 2018.


From gene towards selective biomass valorization: bacterial β-etherases with catalytic activity on lignin-like polymers.

Picart P, Müller C, Mottweiler J, Wiermans L, Bolm C, Domínguez de María P, Schallmey A.

ChemSusChem. 2014 Nov;7(11):3164-71. doi: 10.1002/cssc.201402465. Epub 2014 Sep 3.


Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin.

Helmich KE, Pereira JH, Gall DL, Heins RA, McAndrew RP, Bingman C, Deng K, Holland KC, Noguera DR, Simmons BA, Sale KL, Ralph J, Donohue TJ, Adams PD, Phillips GN Jr.

J Biol Chem. 2016 Mar 4;291(10):5234-46. doi: 10.1074/jbc.M115.694307. Epub 2015 Dec 4.


Microbial β-etherases and glutathione lyases for lignin valorisation in biorefineries: current state and future perspectives.

Husarcíková J, Voß H, Domínguez de María P, Schallmey A.

Appl Microbiol Biotechnol. 2018 Jul;102(13):5391-5401. doi: 10.1007/s00253-018-9040-3. Epub 2018 May 4. Review.


Dichomitus squalens partially tailors its molecular responses to the composition of solid wood.

Daly P, López SC, Peng M, Lancefield CS, Purvine SO, Kim YM, Zink EM, Dohnalkova A, Singan VR, Lipzen A, Dilworth D, Wang M, Ng V, Robinson E, Orr G, Baker SE, Bruijnincx PCA, Hildén KS, Grigoriev IV, Mäkelä MR, de Vries RP.

Environ Microbiol. 2018 Nov;20(11):4141-4156. doi: 10.1111/1462-2920.14416. Epub 2018 Oct 18.


Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens.

Rytioja J, Hildén K, Mäkinen S, Vehmaanperä J, Hatakka A, Mäkelä MR.

PLoS One. 2015 Dec 14;10(12):e0145166. doi: 10.1371/journal.pone.0145166. eCollection 2015.


The molecular response of the white-rot fungus Dichomitus squalens to wood and non-woody biomass as examined by transcriptome and exoproteome analyses.

Rytioja J, Hildén K, Di Falco M, Zhou M, Aguilar-Pontes MV, Sietiö OM, Tsang A, de Vries RP, Mäkelä MR.

Environ Microbiol. 2017 Mar;19(3):1237-1250. doi: 10.1111/1462-2920.13652. Epub 2017 Jan 23.


Oxalate-metabolising genes of the white-rot fungus Dichomitus squalens are differentially induced on wood and at high proton concentration.

Mäkelä MR, Sietiö OM, de Vries RP, Timonen S, Hildén K.

PLoS One. 2014 Feb 5;9(2):e87959. doi: 10.1371/journal.pone.0087959. eCollection 2014.

Supplemental Content

Support Center