Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

The Mechanism of Decreased IgG/IgE-Binding of Ovalbumin by Preheating Treatment Combined with Glycation Identified by Liquid Chromatography and High-Resolution Mass Spectrometry.

Liao ZW, Ye YH, Wang H, Chen Y, Sha XM, Zhang L, Huang T, Hu YM, Tu ZC.

J Agric Food Chem. 2018 Oct 17;66(41):10693-10702. doi: 10.1021/acs.jafc.8b04165. Epub 2018 Oct 5.

PMID:
30252462
2.

The mechanism of reduced IgG/IgE-binding of β-lactoglobulin by pulsed electric field pretreatment combined with glycation revealed by ECD/FTICR-MS.

Yang W, Tu Z, Wang H, Zhang L, Kaltashov IA, Zhao Y, Niu C, Yao H, Ye W.

Food Funct. 2018 Jan 24;9(1):417-425. doi: 10.1039/c7fo01082f.

PMID:
29220053
3.

Glycation of ovalbumin after high-intensity ultrasound pretreatment: effects on conformation, immunoglobulin (Ig)G/IgE binding ability and antioxidant activity.

Yang W, Tu Z, Wang H, Zhang L, Song Q.

J Sci Food Agric. 2018 Aug;98(10):3767-3773. doi: 10.1002/jsfa.8890. Epub 2018 Mar 25.

PMID:
29344948
4.

Mechanism of Reduction in IgG and IgE Binding of β-Lactoglobulin Induced by Ultrasound Pretreatment Combined with Dry-State Glycation: A Study Using Conventional Spectrometry and High-Resolution Mass Spectrometry.

Yang W, Tu Z, Wang H, Zhang L, Xu S, Niu C, Yao H, Kaltashov IA.

J Agric Food Chem. 2017 Sep 13;65(36):8018-8027. doi: 10.1021/acs.jafc.7b02842. Epub 2017 Aug 29.

PMID:
28800703
5.

Ultrasonic Pretreatment Combined with Dry-State Glycation Reduced the Immunoglobulin E/Immunoglobulin G-Binding Ability of α-Lactalbumin Revealed by High-Resolution Mass Spectrometry.

Liu J, Tu ZC, Liu GX, Niu CD, Yao HL, Wang H, Sha XM, Shao YH, Kaltashov IA.

J Agric Food Chem. 2018 Jun 6;66(22):5691-5698. doi: 10.1021/acs.jafc.8b00489. Epub 2018 May 23.

PMID:
29758985
6.

LC-Orbitrap MS analysis of the glycation modification effects of ovalbumin during freeze-drying with three reducing sugar additives.

Chen Y, Tu ZC, Wang H, Liu GX, Liao ZW, Zhang L.

Food Chem. 2018 Dec 1;268:171-178. doi: 10.1016/j.foodchem.2018.06.092. Epub 2018 Jun 19.

PMID:
30064745
7.

Identification of glycated sites in ovalbumin under freeze-drying processing by liquid chromatography high-resolution mass spectrometry.

Tu ZC, Zhong BZ, Wang H.

Food Chem. 2017 Jul 1;226:1-7. doi: 10.1016/j.foodchem.2017.01.038. Epub 2017 Jan 10.

PMID:
28253998
8.

Combined effect of glycation and sodium carbonate-bicarbonate buffer concentration on IgG binding, IgE binding and conformation of ovalbumin.

Ma XJ, Gao JY, Chen HB.

J Sci Food Agric. 2013 Oct;93(13):3209-15. doi: 10.1002/jsfa.6157. Epub 2013 May 3.

PMID:
23553593
9.

The Reduction in the IgE-Binding Ability of β-Lactoglobulin by Dynamic High-Pressure Microfluidization Coupled with Glycation Treatment Revealed by High-Resolution Mass Spectrometry.

Chen Y, Tu Z, Wang H, Zhang Q, Zhang L, Sha X, Huang T, Ma D, Pang J, Yang P.

J Agric Food Chem. 2017 Aug 2;65(30):6179-6187. doi: 10.1021/acs.jafc.7b00934. Epub 2017 Jul 19.

PMID:
28654282
10.

Changes in the ovalbumin proteolysis profile by high pressure and its effect on IgG and IgE binding.

López-Expósito I, Chicón R, Belloque J, Recio I, Alonso E, López-Fandiño R.

J Agric Food Chem. 2008 Dec 24;56(24):11809-16. doi: 10.1021/jf8023613.

PMID:
19053365
12.

Nitration of the egg-allergen ovalbumin enhances protein allergenicity but reduces the risk for oral sensitization in a murine model of food allergy.

Untersmayr E, Diesner SC, Oostingh GJ, Selzle K, Pfaller T, Schultz C, Zhang Y, Krishnamurthy D, Starkl P, Knittelfelder R, Förster-Waldl E, Pollak A, Scheiner O, Pöschl U, Jensen-Jarolim E, Duschl A.

PLoS One. 2010 Dec 2;5(12):e14210. doi: 10.1371/journal.pone.0014210.

13.

Increase of ovalbumin glycation by the maillard reaction after disruption of the disulfide bridge evaluated by liquid chromatography and high resolution mass spectrometry.

Huang X, Tu Z, Wang H, Zhang Q, Shi Y, Xiao H.

J Agric Food Chem. 2013 Mar 6;61(9):2253-62. doi: 10.1021/jf304758r. Epub 2013 Feb 25.

PMID:
23394680
14.

Human immunoglobulin E (IgE) binding to heated and glycated ovalbumin and ovomucoid before and after in vitro digestion.

Jiménez-Saiz R, Belloque J, Molina E, López-Fandiño R.

J Agric Food Chem. 2011 Sep 28;59(18):10044-51. doi: 10.1021/jf2014638. Epub 2011 Aug 26.

PMID:
21846147
15.

Probing the conformational changes of ovalbumin after glycation using HDX-MS.

Huang X, Tu Z, Wang H, Zhang Q, Chen Y, Shi Y, Xiao H.

Food Chem. 2015 Jan 1;166:62-7. doi: 10.1016/j.foodchem.2014.05.155. Epub 2014 Jun 7.

PMID:
25053029
16.

Conformation affects the potential allergenicity of ovalbumin after heating and glycation.

Ma XJ, Chen HB, Gao JY, Hu CQ, Li X.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013;30(10):1684-92. doi: 10.1080/19440049.2013.822105. Epub 2013 Aug 6.

PMID:
23915026
17.

Liquid Chromatography High-Resolution Mass Spectrometry Identifies the Glycation Sites of Bovine Serum Albumin Induced by d-Ribose with Ultrasonic Treatment.

Zhang N, Tu Z, Wang H, Liu G, Wang Z, Huang T, Qin X, Xie X, Wang A.

J Agric Food Chem. 2018 Jan 24;66(3):563-570. doi: 10.1021/acs.jafc.7b04578. Epub 2018 Jan 11.

PMID:
29280631
19.

[Antigenic determinants on ovalbumin and ovomucoid: comparison of the specificity of IgG and IgE antibodies].

Honma K, Aoyagi M, Saito K, Nishimuta T, Sugimoto K, Tsunoo H, Niimi H, Kohno Y.

Arerugi. 1991 Sep;40(9):1167-75. Japanese.

PMID:
1720303
20.

Comparison of glycation in conventionally and microwave-heated ovalbumin by high resolution mass spectrometry.

Wang H, Tu ZC, Liu GX, Liu CM, Huang XQ, Xiao H.

Food Chem. 2013 Nov 15;141(2):985-91. doi: 10.1016/j.foodchem.2013.04.045. Epub 2013 Apr 28.

PMID:
23790877

Supplemental Content

Support Center