Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Combined HDAC and BET Inhibition Enhances Melanoma Vaccine Immunogenicity and Efficacy.

Badamchi-Zadeh A, Moynihan KD, Larocca RA, Aid M, Provine NM, Iampietro MJ, Kinnear E, Penaloza-MacMaster P, Abbink P, Blass E, Tregoning JS, Irvine DJ, Barouch DH.

J Immunol. 2018 Nov 1;201(9):2744-2752. doi: 10.4049/jimmunol.1800885. Epub 2018 Sep 24.

2.

Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing.

Wei DG, Chiang V, Fyne E, Balakrishnan M, Barnes T, Graupe M, Hesselgesser J, Irrinki A, Murry JP, Stepan G, Stray KM, Tsai A, Yu H, Spindler J, Kearney M, Spina CA, McMahon D, Lalezari J, Sloan D, Mellors J, Geleziunas R, Cihlar T.

PLoS Pathog. 2014 Apr 10;10(4):e1004071. doi: 10.1371/journal.ppat.1004071. eCollection 2014 Apr.

3.
4.

Improved tumor immunity using anti-tyrosinase related protein-1 monoclonal antibody combined with DNA vaccines in murine melanoma.

Saenger YM, Li Y, Chiou KC, Chan B, Rizzuto G, Terzulli SL, Merghoub T, Houghton AN, Wolchok JD.

Cancer Res. 2008 Dec 1;68(23):9884-91. doi: 10.1158/0008-5472.CAN-08-2233.

5.

MUC1 and survivin combination tumor gene vaccine generates specific immune responses and anti-tumor effects in a murine melanoma model.

Zhang H, Liu C, Zhang F, Geng F, Xia Q, Lu Z, Xu P, Xie Y, Wu H, Yu B, Wu J, Yu X, Kong W.

Vaccine. 2016 May 23;34(24):2648-55. doi: 10.1016/j.vaccine.2016.04.045. Epub 2016 Apr 22.

PMID:
27113167
6.

Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma.

Goldszmid RS, Idoyaga J, Bravo AI, Steinman R, Mordoh J, Wainstok R.

J Immunol. 2003 Dec 1;171(11):5940-7.

7.

Immunization with a GM3 ganglioside nanoparticulated vaccine confers an effector CD8(+) T cells-mediated protection against melanoma B16 challenge.

Mazorra Z, Mesa C, Fernández A, Fernández LE.

Cancer Immunol Immunother. 2008 Dec;57(12):1771-80. doi: 10.1007/s00262-008-0503-8. Epub 2008 Mar 20.

PMID:
18351335
8.

Development of a potent melanoma vaccine capable of stimulating CD8(+) T-cells independently of dendritic cells in a mouse model.

Powell KL, Stephens AS, Ralph SJ.

Cancer Immunol Immunother. 2015 Jul;64(7):861-72. doi: 10.1007/s00262-015-1695-3. Epub 2015 Apr 19.

PMID:
25893808
9.

Type I-polarized BRAF-pulsed dendritic cells induce antigen-specific CD8+ T cells that impact BRAF-mutant murine melanoma.

Cintolo JA, Datta J, Xu S, Gupta M, Somasundaram R, Czerniecki BJ.

Melanoma Res. 2016 Feb;26(1):1-11. doi: 10.1097/CMR.0000000000000203.

PMID:
26451873
10.

Cytomegalovirus-Based Vaccine Expressing a Modified Tumor Antigen Induces Potent Tumor-Specific CD8(+) T-cell Response and Protects Mice from Melanoma.

Qiu Z, Huang H, Grenier JM, Perez OA, Smilowitz HM, Adler B, Khanna KM.

Cancer Immunol Res. 2015 May;3(5):536-46. doi: 10.1158/2326-6066.CIR-14-0044. Epub 2015 Jan 29.

11.

Vaccination using melanoma cells treated with p19arf and interferon beta gene transfer in a mouse model: a novel combination for cancer immunotherapy.

Medrano RF, Catani JP, Ribeiro AH, Tomaz SL, Merkel CA, Costanzi-Strauss E, Strauss BE.

Cancer Immunol Immunother. 2016 Apr;65(4):371-82. doi: 10.1007/s00262-016-1807-8. Epub 2016 Feb 18.

PMID:
26887933
12.

A novel T cell-based vaccine capable of stimulating long-term functional CTL memory against B16 melanoma via CD40L signaling.

Xie Y, Wang L, Freywald A, Qureshi M, Chen Y, Xiang J.

Cell Mol Immunol. 2013 Jan;10(1):72-7. doi: 10.1038/cmi.2012.37. Epub 2012 Oct 8.

13.
14.

Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma.

Pilon-Thomas S, Mackay A, Vohra N, Mulé JJ.

J Immunol. 2010 Apr 1;184(7):3442-9. doi: 10.4049/jimmunol.0904114. Epub 2010 Mar 1.

15.

Effective induction of therapeutic antitumor immunity by dendritic cells coexpressing interleukin-18 and tumor antigen.

Xia D, Zheng S, Zhang W, He L, Wang Q, Pan J, Zhang L, Wang J, Cao X.

J Mol Med (Berl). 2003 Sep;81(9):585-96. Epub 2003 Aug 21.

PMID:
12937899
16.

CD63-Mediated Antigen Delivery into Extracellular Vesicles via DNA Vaccination Results in Robust CD8+ T Cell Responses.

Kanuma T, Yamamoto T, Kobiyama K, Moriishi E, Masuta Y, Kusakabe T, Ozasa K, Kuroda E, Jounai N, Ishii KJ.

J Immunol. 2017 Jun 15;198(12):4707-4715. doi: 10.4049/jimmunol.1600731. Epub 2017 May 15.

17.

Adoptive transfer of siRNA Cblb-silenced CD8+ T lymphocytes augments tumor vaccine efficacy in a B16 melanoma model.

Hinterleitner R, Gruber T, Pfeifhofer-Obermair C, Lutz-Nicoladoni C, Tzankov A, Schuster M, Penninger JM, Loibner H, Lametschwandtner G, Wolf D, Baier G.

PLoS One. 2012;7(9):e44295. doi: 10.1371/journal.pone.0044295. Epub 2012 Sep 4.

18.

[The mechanism of anti-tumor immune response against mouse melanoma to xenogeneic vaccination].

Luo F, Mao YQ, Kan B, He QM, Jiang Y, Peng F, Yang L, Tian L.

Sichuan Da Xue Xue Bao Yi Xue Ban. 2004 Nov;35(6):757-60. Chinese.

PMID:
15573746
19.

Combination of HDAC inhibitor MS-275 and IL-2 increased anti-tumor effect in a melanoma model via activated cytotoxic T cells.

Kato Y, Yoshino I, Egusa C, Maeda T, Pili R, Tsuboi R.

J Dermatol Sci. 2014 Aug;75(2):140-7. doi: 10.1016/j.jdermsci.2014.04.014. Epub 2014 May 14.

PMID:
24866536
20.

Paracrine release of IL-12 stimulates IFN-gamma production and dramatically enhances the antigen-specific T cell response after vaccination with a novel peptide-based cancer vaccine.

Salem ML, Kadima AN, Zhou Y, Nguyen CL, Rubinstein MP, Demcheva M, Vournakis JN, Cole DJ, Gillanders WE.

J Immunol. 2004 May 1;172(9):5159-67.

Supplemental Content

Support Center