Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Microtubule dynamics regulation reconstituted in budding yeast lysates.

Bergman ZJ, Wong J, Drubin DG, Barnes G.

J Cell Sci. 2018 Sep 24;132(4). pii: jcs219386. doi: 10.1242/jcs.219386.

2.

Reconstituting dynamic microtubule polymerization regulation by TOG domain proteins.

Al-Bassam J.

Methods Enzymol. 2014;540:131-48. doi: 10.1016/B978-0-12-397924-7.00008-X.

PMID:
24630105
3.

Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae.

Maddox P, Chin E, Mallavarapu A, Yeh E, Salmon ED, Bloom K.

J Cell Biol. 1999 Mar 8;144(5):977-87.

4.

Reconstitution of physiological microtubule dynamics using purified components.

Kinoshita K, Arnal I, Desai A, Drechsel DN, Hyman AA.

Science. 2001 Nov 9;294(5545):1340-3.

5.
7.

Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin.

Hendershott MC, Vale RD.

Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5860-5. doi: 10.1073/pnas.1404133111. Epub 2014 Mar 26.

8.

A Tubulin Binding Switch Underlies Kip3/Kinesin-8 Depolymerase Activity.

Arellano-Santoyo H, Geyer EA, Stokasimov E, Chen GY, Su X, Hancock W, Rice LM, Pellman D.

Dev Cell. 2017 Jul 10;42(1):37-51.e8. doi: 10.1016/j.devcel.2017.06.011.

9.

Measuring the Effects of Microtubule-Associated Proteins on Microtubule Dynamics In Vitro.

Zanic M.

Methods Mol Biol. 2016;1413:47-61. doi: 10.1007/978-1-4939-3542-0_4.

PMID:
27193842
10.

Spatial control of microtubule length and lifetime by opposing stabilizing and destabilizing functions of Kinesin-8.

Fukuda Y, Luchniak A, Murphy ER, Gupta ML Jr.

Curr Biol. 2014 Aug 18;24(16):1826-35. doi: 10.1016/j.cub.2014.06.069. Epub 2014 Jul 31.

11.

beta-Tubulin mutation suppresses microtubule dynamics in vitro and slows mitosis in vivo.

Sage CR, Davis AS, Dougherty CA, Sullivan K, Farrell KW.

Cell Motil Cytoskeleton. 1995;30(4):285-300.

PMID:
7796459
12.

A new role for kinesin-directed transport of Bik1p (CLIP-170) in Saccharomyces cerevisiae.

Caudron F, Andrieux A, Job D, Boscheron C.

J Cell Sci. 2008 May 1;121(Pt 9):1506-13. doi: 10.1242/jcs.023374. Epub 2008 Apr 14.

13.

Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency.

Podolski M, Mahamdeh M, Howard J.

J Biol Chem. 2014 Oct 10;289(41):28087-93. doi: 10.1074/jbc.M114.584300. Epub 2014 Aug 29.

14.

Direct regulation of microtubule dynamics by KIF17 motor and tail domains.

Acharya BR, Espenel C, Kreitzer G.

J Biol Chem. 2013 Nov 8;288(45):32302-13. doi: 10.1074/jbc.M113.494989. Epub 2013 Sep 26.

15.

Molecular mechanisms facilitating the initial kinetochore encounter with spindle microtubules.

Vasileva V, Gierlinski M, Yue Z, O'Reilly N, Kitamura E, Tanaka TU.

J Cell Biol. 2017 Jun 5;216(6):1609-1622. doi: 10.1083/jcb.201608122. Epub 2017 Apr 26.

18.

Analysis of kinesin motor function at budding yeast kinetochores.

Tytell JD, Sorger PK.

J Cell Biol. 2006 Mar 13;172(6):861-74.

19.

Factors that Control Mitotic Spindle Dynamics.

Fraschini R.

Adv Exp Med Biol. 2017;925:89-101. doi: 10.1007/5584_2016_74. Review.

PMID:
27722958
20.

CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport.

Lomakin AJ, Semenova I, Zaliapin I, Kraikivski P, Nadezhdina E, Slepchenko BM, Akhmanova A, Rodionov V.

Dev Cell. 2009 Sep;17(3):323-33. doi: 10.1016/j.devcel.2009.07.010.

Supplemental Content

Support Center