Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Microencapsulation of a Staphylococcus phage for concentration and long-term storage.

El Haddad L, Lemay MJ, Khalil GE, Moineau S, Champagne CP.

Food Microbiol. 2018 Dec;76:304-309. doi: 10.1016/j.fm.2018.06.002. Epub 2018 Jun 1.

PMID:
30166155
2.

High precision microfluidic microencapsulation of bacteriophages for enteric delivery.

Vinner GK, Malik DJ.

Res Microbiol. 2018 Nov;169(9):522-530. doi: 10.1016/j.resmic.2018.05.011. Epub 2018 Jun 7.

3.

Formulation, stabilisation and encapsulation of bacteriophage for phage therapy.

Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MRJ, Garton NJ, Stapley AGF, Kirpichnikova A.

Adv Colloid Interface Sci. 2017 Nov;249:100-133. doi: 10.1016/j.cis.2017.05.014. Epub 2017 May 14. Review.

4.

The effect of bacteriophages on the acidification of a vegetable juice medium by microencapsulated Lactobacillus plantarum.

Champagne CP, Moineau S, Lafleur S, Savard T.

Food Microbiol. 2017 May;63:28-34. doi: 10.1016/j.fm.2016.10.036. Epub 2016 Oct 28.

PMID:
28040179
5.

Comparative analysis of different preservation techniques for the storage of Staphylococcus phages aimed for the industrial development of phage-based antimicrobial products.

González-Menéndez E, Fernández L, Gutiérrez D, Rodríguez A, Martínez B, García P.

PLoS One. 2018 Oct 11;13(10):e0205728. doi: 10.1371/journal.pone.0205728. eCollection 2018.

6.

Survival, acid and bile tolerance, and surface hydrophobicity of microencapsulated B. animalis ssp. lactis Bb12 during storage at room temperature.

Dianawati D, Shah NP.

J Food Sci. 2011 Nov-Dec;76(9):M592-9. doi: 10.1111/j.1750-3841.2011.02422.x.

PMID:
22416710
7.

Efficacy of two Staphylococcus aureus phage cocktails in cheese production.

El Haddad L, Roy JP, Khalil GE, St-Gelais D, Champagne CP, Labrie S, Moineau S.

Int J Food Microbiol. 2016 Jan 18;217:7-13. doi: 10.1016/j.ijfoodmicro.2015.10.001. Epub 2015 Oct 5.

PMID:
26476571
8.

Strategies to Encapsulate the Staphylococcus aureus Bacteriophage phiIPLA-RODI.

González-Menéndez E, Fernández L, Gutiérrez D, Pando D, Martínez B, Rodríguez A, García P.

Viruses. 2018 Sep 13;10(9). pii: E495. doi: 10.3390/v10090495.

9.

Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release.

Vinner GK, Vladisavljević GT, Clokie MRJ, Malik DJ.

PLoS One. 2017 Oct 12;12(10):e0186239. doi: 10.1371/journal.pone.0186239. eCollection 2017.

10.

Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods.

Lone A, Anany H, Hakeem M, Aguis L, Avdjian AC, Bouget M, Atashi A, Brovko L, Rochefort D, Griffiths MW.

Int J Food Microbiol. 2016 Jan 18;217:49-58. doi: 10.1016/j.ijfoodmicro.2015.10.011. Epub 2015 Oct 22.

PMID:
26490649
11.

Improving the safety of Staphylococcus aureus polyvalent phages by their production on a Staphylococcus xylosus strain.

El Haddad L, Ben Abdallah N, Plante PL, Dumaresq J, Katsarava R, Labrie S, Corbeil J, St-Gelais D, Moineau S.

PLoS One. 2014 Jul 25;9(7):e102600. doi: 10.1371/journal.pone.0102600. eCollection 2014.

12.

Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery.

Ma Y, Pacan JC, Wang Q, Xu Y, Huang X, Korenevsky A, Sabour PM.

Appl Environ Microbiol. 2008 Aug;74(15):4799-805. doi: 10.1128/AEM.00246-08. Epub 2008 May 30.

13.

Enzyme stability of microencapsulated Bifidobacterium animalis ssp. lactis Bb12 after freeze drying and during storage in low water activity at room temperature.

Dianawati D, Shah NP.

J Food Sci. 2011 Aug;76(6):M463-71. doi: 10.1111/j.1750-3841.2011.02246.x. Epub 2011 Jun 22.

PMID:
21696390
14.

Characterization and complete genome of the virulent Myoviridae phage JD007 active against a variety of Staphylococcus aureus isolates from different hospitals in Shanghai, China.

Cui Z, Feng T, Gu F, Li Q, Dong K, Zhang Y, Zhu Y, Han L, Qin J, Guo X.

Virol J. 2017 Feb 8;14(1):26. doi: 10.1186/s12985-017-0701-0.

15.

Effects of production methods and protective ingredients on the viability of probiotic Lactobacillus rhamnosus R0011 in air-dried alginate beads.

Champagne CP, Raymond Y, Arcand Y.

Can J Microbiol. 2017 Jan;63(1):35-45. doi: 10.1139/cjm-2016-0349. Epub 2016 Aug 26.

PMID:
27900876
16.

Stability of Staphylococcus aureus phage ISP after freeze-drying (lyophilization).

Merabishvili M, Vervaet C, Pirnay JP, De Vos D, Verbeken G, Mast J, Chanishvili N, Vaneechoutte M.

PLoS One. 2013 Jul 2;8(7):e68797. doi: 10.1371/journal.pone.0068797. Print 2013.

17.

Microencapsulation with alginate/CaCO3: A strategy for improved phage therapy.

Colom J, Cano-Sarabia M, Otero J, Aríñez-Soriano J, Cortés P, Maspoch D, Llagostera M.

Sci Rep. 2017 Jan 25;7:41441. doi: 10.1038/srep41441.

18.

Characterization and partial genomic analysis of a lytic Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis in Mid-east of China.

Zhang L, Bao H, Wei C, Zhang H, Zhou Y, Wang R.

Virus Genes. 2015 Feb;50(1):111-7. doi: 10.1007/s11262-014-1130-4. Epub 2014 Oct 21.

PMID:
25328045
19.

Encapsulation of E. coli phage ZCEC5 in chitosan-alginate beads as a delivery system in phage therapy.

Abdelsattar AS, Abdelrahman F, Dawoud A, Connerton IF, El-Shibiny A.

AMB Express. 2019 Jun 17;9(1):87. doi: 10.1186/s13568-019-0810-9.

PMID:
31209685
20.

Microencapsulation by freeze-drying of potassium norbixinate and curcumin with maltodextrin: stability, solubility, and food application.

Sousdaleff M, Baesso ML, Medina Neto A, Nogueira AC, Marcolino VA, Matioli G.

J Agric Food Chem. 2013 Jan 30;61(4):955-65. doi: 10.1021/jf304047g. Epub 2013 Jan 17.

PMID:
23256578

Supplemental Content

Support Center