Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Defect generation in TiO2 nanotube anodes via heat treatment in various atmospheres for lithium-ion batteries.

Savva AI, Smith KA, Lawson M, Croft SR, Weltner AE, Jones CD, Bull H, Simmonds PJ, Li L, Xiong H.

Phys Chem Chem Phys. 2018 Sep 12;20(35):22537-22546. doi: 10.1039/c8cp04368j.

PMID:
30140842
2.

Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres.

Sarma B, Jurovitzki AL, Ray RS, Smith YR, Mohanty SK, Misra M.

Nanotechnology. 2015 Jul 3;26(26):265401. doi: 10.1088/0957-4484/26/26/265401. Epub 2015 Jun 9.

PMID:
26057179
3.

Plasma-Induced Oxygen Vacancies in Urchin-Like Anatase Titania Coated by Carbon for Excellent Sodium-Ion Battery Anodes.

Gan Q, He H, Zhao K, He Z, Liu S, Yang S.

ACS Appl Mater Interfaces. 2018 Feb 28;10(8):7031-7042. doi: 10.1021/acsami.7b13760. Epub 2018 Feb 13.

PMID:
29338183
4.

Tunable Pseudocapacitance in 3D TiO2-δ Nanomembranes Enabling Superior Lithium Storage Performance.

Huang S, Zhang L, Lu X, Liu L, Liu L, Sun X, Yin Y, Oswald S, Zou Z, Ding F, Schmidt OG.

ACS Nano. 2017 Jan 24;11(1):821-830. doi: 10.1021/acsnano.6b07274. Epub 2016 Dec 30.

PMID:
28027436
5.

Lithium insertion in nanostructured TiO(2)(B) architectures.

Dylla AG, Henkelman G, Stevenson KJ.

Acc Chem Res. 2013 May 21;46(5):1104-12. doi: 10.1021/ar300176y. Epub 2013 Feb 20.

PMID:
23425042
6.

The role of grain refinement and film formation potential on the electrochemical behavior of commercial pure titanium in Hank's physiological solution.

Fattah-Alhosseini A, Imantalab O, Ansari G.

Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:827-834. doi: 10.1016/j.msec.2016.10.072. Epub 2016 Oct 29.

PMID:
27987778
7.

On the nature of defect states in tungstate nanoflake arrays as promising photoanodes in solar fuel cells.

Mohamed AM, Amer AW, AlQaradawi SY, Allam NK.

Phys Chem Chem Phys. 2016 Aug 10;18(32):22217-23. doi: 10.1039/c6cp02394k.

PMID:
27453354
8.

Ternary CNTs@TiO₂/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries.

Madian M, Ummethala R, Naga AOAE, Ismail N, Rümmeli MH, Eychmüller A, Giebeler L.

Materials (Basel). 2017 Jun 20;10(6). pii: E678. doi: 10.3390/ma10060678.

9.

Enhanced Electrochemical Properties of Li3 VO4 with Controlled Oxygen Vacancies as Li-Ion Battery Anode.

Wang K, Zhang C, Fu H, Liu C, Li Z, Ma W, Lu X, Cao G.

Chemistry. 2017 Apr 19;23(22):5368-5374. doi: 10.1002/chem.201700150. Epub 2017 Mar 27.

PMID:
28244211
10.

Oxygen-Deficient Titanium Dioxide Nanosheets as More Effective Polysulfide Reservoirs for Lithium-Sulfur Batteries.

Wang HC, Fan CY, Zheng YP, Zhang XH, Li WH, Liu SY, Sun HZ, Zhang JP, Sun LN, Wu XL.

Chemistry. 2017 Jul 18;23(40):9666-9673. doi: 10.1002/chem.201701580. Epub 2017 Jun 27.

PMID:
28508401
11.

Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.

Fang HT, Liu M, Wang DW, Sun T, Guan DS, Li F, Zhou J, Sham TK, Cheng HM.

Nanotechnology. 2009 Jun 3;20(22):225701. doi: 10.1088/0957-4484/20/22/225701. Epub 2009 May 13.

PMID:
19436089
12.

On the passive and semiconducting behavior of severely deformed pure titanium in Ringer's physiological solution at 37°C: A trial of the point defect model.

Ansari G, Fattah-Alhosseini A.

Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:64-71. doi: 10.1016/j.msec.2017.02.046. Epub 2017 Feb 13.

PMID:
28415510
13.

Fabrication and Characterization of SnO₂/Graphene Composites as High Capacity Anodes for Li-Ion Batteries.

Dhanabalan A, Li X, Agrawal R, Chen C, Wang C.

Nanomaterials (Basel). 2013 Nov 15;3(4):606-614. doi: 10.3390/nano3040606.

14.

Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries.

Lou F, Zhou H, Tran TD, Melandsø Buan ME, Vullum-Bruer F, Rønning M, Walmsley JC, Chen D.

ChemSusChem. 2014 May;7(5):1335-46. doi: 10.1002/cssc.201300461. Epub 2014 Feb 27.

PMID:
24578068
15.

On the performances of CuxO-TiO2 (x = 1, 2) nanomaterials as innovative anodes for thin film lithium batteries.

Barreca D, Carraro G, Gasparotto A, Maccato C, Cruz-Yusta M, Gómez-Camer JL, Morales J, Sada C, Sánchez L.

ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3610-9. doi: 10.1021/am300678t. Epub 2012 Jun 28.

PMID:
22704494
16.

Ternary Sn-Ti-O based nanostructures as anodes for lithium ion batteries.

Wang H, Huang H, Niu C, Rogach AL.

Small. 2015 Mar 25;11(12):1364-83. doi: 10.1002/smll.201402682. Epub 2014 Dec 12.

PMID:
25504364
17.

Low temperature hydrogen reduction of high surface area anatase and anatase/β-TiO₂ for high-charging-rate batteries.

Ventosa E, Tymoczko A, Xie K, Xia W, Muhler M, Schuhmann W.

ChemSusChem. 2014 Sep;7(9):2584-9. doi: 10.1002/cssc.201402279. Epub 2014 Jul 8.

PMID:
25044925
18.

Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.

Zhang C, Yu H, Li Y, Gao Y, Zhao Y, Song W, Shao Z, Yi B.

ChemSusChem. 2013 Apr;6(4):659-66. doi: 10.1002/cssc.201200828. Epub 2013 Feb 28.

PMID:
23450835
19.

Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries.

Wang N, Yue J, Chen L, Qian Y, Yang J.

ACS Appl Mater Interfaces. 2015 May 20;7(19):10348-55. doi: 10.1021/acsami.5b01208. Epub 2015 May 8.

PMID:
25928277
20.

Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications.

Mohan L, Anandan C, Rajendran N.

Mater Sci Eng C Mater Biol Appl. 2015 May;50:394-401. doi: 10.1016/j.msec.2015.02.013. Epub 2015 Feb 11.

PMID:
25746285

Supplemental Content

Support Center