Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Global phosphoproteomic analysis identifies SRMS-regulated secondary signaling intermediates.

Goel RK, Meyer M, Paczkowska M, Reimand J, Vizeacoumar F, Vizeacoumar F, Lam TT, Lukong KE.

Proteome Sci. 2018 Aug 18;16:16. doi: 10.1186/s12953-018-0143-7. eCollection 2018.

2.

Phosphoproteomics Analysis Identifies Novel Candidate Substrates of the Nonreceptor Tyrosine Kinase, Src-related Kinase Lacking C-terminal Regulatory Tyrosine and N-terminal Myristoylation Sites (SRMS).

Goel RK, Paczkowska M, Reimand J, Napper S, Lukong KE.

Mol Cell Proteomics. 2018 May;17(5):925-947. doi: 10.1074/mcp.RA118.000643. Epub 2018 Mar 1.

3.

The unique N-terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1.

Goel RK, Miah S, Black K, Kalra N, Dai C, Lukong KE.

FEBS J. 2013 Sep;280(18):4539-59. doi: 10.1111/febs.12420. Epub 2013 Aug 19.

4.

Understanding the cellular roles of Fyn-related kinase (FRK): implications in cancer biology.

Goel RK, Lukong KE.

Cancer Metastasis Rev. 2016 Jun;35(2):179-99. doi: 10.1007/s10555-016-9623-3. Review.

PMID:
27067725
5.

Network Reconstruction and Significant Pathway Extraction Using Phosphoproteomic Data from Cancer Cells.

Buffard M, Naldi A, Radulescu O, Coopman PJ, Larive RM, Freiss G.

Proteomics. 2019 Aug 31:e1800450. doi: 10.1002/pmic.201800450. [Epub ahead of print]

PMID:
31472481
6.

Integrating Phosphoproteomics and Bioinformatics to Study Brassinosteroid-Regulated Phosphorylation Dynamics in Arabidopsis.

Lin LL, Hsu CL, Hu CW, Ko SY, Hsieh HL, Huang HC, Juan HF.

BMC Genomics. 2015 Jul 18;16:533. doi: 10.1186/s12864-015-1753-4.

7.

Protein-tyrosine Phosphatase and Kinase Specificity in Regulation of SRC and Breast Tumor Kinase.

Fan G, Aleem S, Yang M, Miller WT, Tonks NK.

J Biol Chem. 2015 Jun 26;290(26):15934-47. doi: 10.1074/jbc.M115.651703. Epub 2015 Apr 20.

8.

RAKing in AKT: a tumor suppressor function for the intracellular tyrosine kinase FRK.

Brauer PM, Tyner AL.

Cell Cycle. 2009 Sep 1;8(17):2728-32. Epub 2009 Sep 29. Review.

9.

Regulation of Platelet Derived Growth Factor Signaling by Leukocyte Common Antigen-related (LAR) Protein Tyrosine Phosphatase: A Quantitative Phosphoproteomics Study.

Sarhan AR, Patel TR, Creese AJ, Tomlinson MG, Hellberg C, Heath JK, Hotchin NA, Cunningham DL.

Mol Cell Proteomics. 2016 Jun;15(6):1823-36. doi: 10.1074/mcp.M115.053652. Epub 2016 Apr 13.

10.

Profiling Y561-dependent and -independent substrates of CSF-1R in epithelial cells.

Knowlton ML, Selfors LM, Wrobel CN, Gu TL, Ballif BA, Gygi SP, Polakiewicz R, Brugge JS.

PLoS One. 2010 Oct 26;5(10):e13587. doi: 10.1371/journal.pone.0013587.

11.

Defining the substrate specificity determinants recognized by the active site of C-terminal Src kinase-homologous kinase (CHK) and identification of ╬▓-synuclein as a potential CHK physiological substrate.

Ia KK, Jeschke GR, Deng Y, Kamaruddin MA, Williamson NA, Scanlon DB, Culvenor JG, Hossain MI, Purcell AW, Liu S, Zhu HJ, Catimel B, Turk BE, Cheng HC.

Biochemistry. 2011 Aug 9;50(31):6667-77. doi: 10.1021/bi2001938. Epub 2011 Jul 18.

12.

Label-free quantitative phosphoproteomic profiling of cellular response induced by an insect cytokine paralytic peptide.

Song L, Wang F, Dong Z, Hua X, Xia Q.

J Proteomics. 2017 Feb 10;154:49-58. doi: 10.1016/j.jprot.2016.11.018. Epub 2016 Nov 27.

PMID:
27903465
13.

Regulation of the nonreceptor tyrosine kinase Brk by autophosphorylation and by autoinhibition.

Qiu H, Miller WT.

J Biol Chem. 2002 Sep 13;277(37):34634-41. Epub 2002 Jul 16.

14.

A chemical and phosphoproteomic characterization of dasatinib action in lung cancer.

Li J, Rix U, Fang B, Bai Y, Edwards A, Colinge J, Bennett KL, Gao J, Song L, Eschrich S, Superti-Furga G, Koomen J, Haura EB.

Nat Chem Biol. 2010 Apr;6(4):291-9. doi: 10.1038/nchembio.332. Epub 2010 Feb 28.

15.

Brk, Srm, Frk, and Src42A form a distinct family of intracellular Src-like tyrosine kinases.

Serfas MS, Tyner AL.

Oncol Res. 2003;13(6-10):409-19. Review.

PMID:
12725532
16.

Stable isotope metabolic labeling-based quantitative phosphoproteomic analysis of Arabidopsis mutants reveals ethylene-regulated time-dependent phosphoproteins and putative substrates of constitutive triple response 1 kinase.

Yang Z, Guo G, Zhang M, Liu CY, Hu Q, Lam H, Cheng H, Xue Y, Li J, Li N.

Mol Cell Proteomics. 2013 Dec;12(12):3559-82. doi: 10.1074/mcp.M113.031633. Epub 2013 Sep 16.

17.

Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics.

Ferrando IM, Chaerkady R, Zhong J, Molina H, Jacob HK, Herbst-Robinson K, Dancy BM, Katju V, Bose R, Zhang J, Pandey A, Cole PA.

Mol Cell Proteomics. 2012 Aug;11(8):355-69. doi: 10.1074/mcp.M111.015750. Epub 2012 Apr 12.

18.

Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling.

Amanchy R, Zhong J, Hong R, Kim JH, Gucek M, Cole RN, Molina H, Pandey A.

Mol Oncol. 2009 Dec;3(5-6):439-50. doi: 10.1016/j.molonc.2009.07.001. Epub 2009 Jul 10.

19.

Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition.

Rexer BN, Ham AJ, Rinehart C, Hill S, Granja-Ingram Nde M, González-Angulo AM, Mills GB, Dave B, Chang JC, Liebler DC, Arteaga CL.

Oncogene. 2011 Oct 6;30(40):4163-74. doi: 10.1038/onc.2011.130. Epub 2011 Apr 18.

20.

Identification of insulin receptor substrate 1 serine/threonine phosphorylation sites using mass spectrometry analysis: regulatory role of serine 1223.

Luo M, Reyna S, Wang L, Yi Z, Carroll C, Dong LQ, Langlais P, Weintraub ST, Mandarino LJ.

Endocrinology. 2005 Oct;146(10):4410-6. Epub 2005 Jul 14.

PMID:
16020478

Supplemental Content

Support Center