Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99


Titan cell production in Cryptococcus neoformans reshapes the cell wall and capsule composition during infection.

Mukaremera L, Lee KK, Wagener J, Wiesner DL, Gow NAR, Nielsen K.

Cell Surf. 2018 Mar;1:15-24. doi: 10.1016/j.tcsw.2017.12.001. Epub 2018 Feb 16.


Cryptococcus neoformans Rim101 is associated with cell wall remodeling and evasion of the host immune responses.

O'Meara TR, Holmer SM, Selvig K, Dietrich F, Alspaugh JA.

MBio. 2013 Jan 15;4(1). pii: e00522-12. doi: 10.1128/mBio.00522-12.


Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators.

Hommel B, Mukaremera L, Cordero RJB, Coelho C, Desjardins CA, Sturny-Leclère A, Janbon G, Perfect JR, Fraser JA, Casadevall A, Cuomo CA, Dromer F, Nielsen K, Alanio A.

PLoS Pathog. 2018 May 18;14(5):e1006982. doi: 10.1371/journal.ppat.1006982. eCollection 2018 May.


The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis.

Dambuza IM, Drake T, Chapuis A, Zhou X, Correia J, Taylor-Smith L, LeGrave N, Rasmussen T, Fisher MC, Bicanic T, Harrison TS, Jaspars M, May RC, Brown GD, Yuecel R, MacCallum DM, Ballou ER.

PLoS Pathog. 2018 May 18;14(5):e1006978. doi: 10.1371/journal.ppat.1006978. eCollection 2018 May.


N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture.

Camacho E, Chrissian C, Cordero RJB, Liporagi-Lopes L, Stark RE, Casadevall A.

Microbiology. 2017 Nov;163(11):1540-1556. doi: 10.1099/mic.0.000552. Epub 2017 Oct 18.


Cryptococcus neoformans Cda1 and Its Chitin Deacetylase Activity Are Required for Fungal Pathogenesis.

Upadhya R, Baker LG, Lam WC, Specht CA, Donlin MJ, Lodge JK.

MBio. 2018 Nov 20;9(6). pii: e02087-18. doi: 10.1128/mBio.02087-18.


Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections.

Okagaki LH, Nielsen K.

Eukaryot Cell. 2012 Jun;11(6):820-6. doi: 10.1128/EC.00121-12. Epub 2012 Apr 27.


Titan cell production enhances the virulence of Cryptococcus neoformans.

Crabtree JN, Okagaki LH, Wiesner DL, Strain AK, Nielsen JN, Nielsen K.

Infect Immun. 2012 Nov;80(11):3776-85. doi: 10.1128/IAI.00507-12. Epub 2012 Aug 13.


The formation of titan cells in Cryptococcus neoformans depends on the mouse strain and correlates with induction of Th2-type responses.

García-Barbazán I, Trevijano-Contador N, Rueda C, de Andrés B, Pérez-Tavárez R, Herrero-Fernández I, Gaspar ML, Zaragoza O.

Cell Microbiol. 2016 Jan;18(1):111-24. doi: 10.1111/cmi.12488. Epub 2015 Sep 6.


Titan cells in Cryptococcus neoformans: cells with a giant impact.

Zaragoza O, Nielsen K.

Curr Opin Microbiol. 2013 Aug;16(4):409-13. doi: 10.1016/j.mib.2013.03.006. Epub 2013 Apr 12.


Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation.

Gerstein AC, Fu MS, Mukaremera L, Li Z, Ormerod KL, Fraser JA, Berman J, Nielsen K.

MBio. 2015 Oct 13;6(5):e01340-15. doi: 10.1128/mBio.01340-15.


Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals.

Trevijano-Contador N, de Oliveira HC, García-Rodas R, Rossi SA, Llorente I, Zaballos Á, Janbon G, Ariño J, Zaragoza Ó.

PLoS Pathog. 2018 May 18;14(5):e1007007. doi: 10.1371/journal.ppat.1007007. eCollection 2018 May.


Cross talk between the cell wall integrity and cyclic AMP/protein kinase A pathways in Cryptococcus neoformans.

Donlin MJ, Upadhya R, Gerik KJ, Lam W, VanArendonk LG, Specht CA, Sharma NK, Lodge JK.

MBio. 2014 Aug 12;5(4). pii: e01573-14. doi: 10.1128/mBio.01573-14.


Role for chitin and chitooligomers in the capsular architecture of Cryptococcus neoformans.

Fonseca FL, Nimrichter L, Cordero RJ, Frases S, Rodrigues J, Goldman DL, Andruszkiewicz R, Milewski S, Travassos LR, Casadevall A, Rodrigues ML.

Eukaryot Cell. 2009 Oct;8(10):1543-53. doi: 10.1128/EC.00142-09. Epub 2009 Jul 17.


Cryptococcus neoformans capsular polysaccharides form branched and complex filamentous networks viewed by high-resolution microscopy.

Araújo GR, Fontes GN, Leão D, Rocha GM, Pontes B, Sant'Anna C, de Souza W, Frases S.

J Struct Biol. 2016 Jan;193(1):75-82. doi: 10.1016/j.jsb.2015.11.010. Epub 2015 Nov 30.


Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition.

Esher SK, Ost KS, Kohlbrenner MA, Pianalto KM, Telzrow CL, Campuzano A, Nichols CB, Munro C, Wormley FL Jr, Alspaugh JA.

PLoS Pathog. 2018 Jun 4;14(6):e1007126. doi: 10.1371/journal.ppat.1007126. eCollection 2018 Jun.


The Cryptococcus neoformans capsule: a sword and a shield.

O'Meara TR, Alspaugh JA.

Clin Microbiol Rev. 2012 Jul;25(3):387-408. doi: 10.1128/CMR.00001-12. Review.


Recognition of Cryptococcus neoformans by Pattern Recognition Receptors and its Role in Host Defense to This Infection.

Sato K, Kawakami K.

Med Mycol J. 2017;58(3):J83-J90. doi: 10.3314/mmj.17.011. Review. Japanese.


An anti-beta-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformans in vitro and exerts therapeutic, anticryptococcal activity in vivo.

Rachini A, Pietrella D, Lupo P, Torosantucci A, Chiani P, Bromuro C, Proietti C, Bistoni F, Cassone A, Vecchiarelli A.

Infect Immun. 2007 Nov;75(11):5085-94. Epub 2007 Jul 2.


A glycosylphosphatidylinositol anchor is required for membrane localization but dispensable for cell wall association of chitin deacetylase 2 in Cryptococcus neoformans.

Gilbert NM, Baker LG, Specht CA, Lodge JK.

MBio. 2012 Feb 21;3(1). pii: e00007-12. doi: 10.1128/mBio.00007-12. Print 2012.

Supplemental Content

Support Center