Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

GLO1 gene polymorphisms and their association with retinitis pigmentosa: a case-control study in a Sicilian population.

Donato L, Scimone C, Nicocia G, Denaro L, Robledo R, Sidoti A, D'Angelo R.

Mol Biol Rep. 2018 Oct;45(5):1349-1355. doi: 10.1007/s11033-018-4295-4. Epub 2018 Aug 11.

PMID:
30099685
2.

Identification of glyoxalase 1 polymorphisms associated with enzyme activity.

Peculis R, Konrade I, Skapare E, Fridmanis D, Nikitina-Zake L, Lejnieks A, Pirags V, Dambrova M, Klovins J.

Gene. 2013 Feb 15;515(1):140-3. doi: 10.1016/j.gene.2012.11.009. Epub 2012 Nov 29.

PMID:
23201419
3.

The GLO1 C332 (Ala111) allele confers autism vulnerability: family-based genetic association and functional correlates.

Gabriele S, Lombardi F, Sacco R, Napolioni V, Altieri L, Tirindelli MC, Gregorj C, Bravaccio C, Rousseau F, Persico AM.

J Psychiatr Res. 2014 Dec;59:108-16. doi: 10.1016/j.jpsychires.2014.07.021. Epub 2014 Aug 8.

PMID:
25201284
4.

Loss of cone molecular markers in rhodopsin-mutant human retinas with retinitis pigmentosa.

John SK, Smith JE, Aguirre GD, Milam AH.

Mol Vis. 2000 Nov 3;6:204-15.

5.

A review of the mechanisms of cone degeneration in retinitis pigmentosa.

Narayan DS, Wood JP, Chidlow G, Casson RJ.

Acta Ophthalmol. 2016 Dec;94(8):748-754. doi: 10.1111/aos.13141. Epub 2016 Jun 27. Review.

6.

Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa.

Shen J, Yang X, Dong A, Petters RM, Peng YW, Wong F, Campochiaro PA.

J Cell Physiol. 2005 Jun;203(3):457-64.

PMID:
15744744
7.

Polymorphisms of the receptor for advanced glycation end-products and glyoxalase I in patients with renal cancer.

Chocholatý M, Jáchymová M, Schmidt M, Havlová K, Křepelová A, Zima T, Babjuk M, Kalousová M.

Tumour Biol. 2015 Mar;36(3):2121-6. doi: 10.1007/s13277-014-2821-0. Epub 2014 Nov 19.

PMID:
25407489
8.

Glyoxalase I polymorphism rs2736654 causing the Ala111Glu substitution modulates enzyme activity--implications for autism.

Barua M, Jenkins EC, Chen W, Kuizon S, Pullarkat RK, Junaid MA.

Autism Res. 2011 Aug;4(4):262-70. doi: 10.1002/aur.197. Epub 2011 Apr 12.

9.

Role of glyoxalase I gene polymorphisms in late-onset epilepsy and drug-resistant epilepsy.

Tao H, Si L, Zhou X, Liu Z, Ma Z, Zhou H, Zhong W, Cui L, Zhang S, Li Y, Ma G, Zhao J, Huang W, Yao L, Xu Z, Zhao B, Li K.

J Neurol Sci. 2016 Apr 15;363:200-6. doi: 10.1016/j.jns.2016.01.052. Epub 2016 Jan 27.

PMID:
27000251
10.

The Thioredoxin Encoded by the Rod-Derived Cone Viability Factor Gene Protects Cone Photoreceptors Against Oxidative Stress.

Mei X, Chaffiol A, Kole C, Yang Y, Millet-Puel G, Clérin E, Aït-Ali N, Bennett J, Dalkara D, Sahel JA, Duebel J, Léveillard T.

Antioxid Redox Signal. 2016 Jun 1;24(16):909-23. doi: 10.1089/ars.2015.6509. Epub 2016 May 12.

PMID:
27025156
11.
12.

Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones.

Kranz K, Paquet-Durand F, Weiler R, Janssen-Bienhold U, Dedek K.

PLoS One. 2013;8(2):e57163. doi: 10.1371/journal.pone.0057163. Epub 2013 Feb 27.

13.

The mechanism of cone cell death in Retinitis Pigmentosa.

Campochiaro PA, Mir TA.

Prog Retin Eye Res. 2018 Jan;62:24-37. doi: 10.1016/j.preteyeres.2017.08.004. Epub 2017 Sep 27. Review.

PMID:
28962928
14.

Weak association of glyoxalase 1 (GLO1) variants with autism spectrum disorder.

Kovač J, Podkrajšek KT, Lukšič MM, Battelino T.

Eur Child Adolesc Psychiatry. 2015 Jan;24(1):75-82. doi: 10.1007/s00787-014-0537-8. Epub 2014 Mar 27.

PMID:
24671236
15.

Loss of retinitis pigmentosa 2 (RP2) protein affects cone photoreceptor sensory cilium elongation in mice.

Li L, Rao KN, Zheng-Le Y, Hurd TW, Lillo C, Khanna H.

Cytoskeleton (Hoboken). 2015 Sep;72(9):447-54. doi: 10.1002/cm.21255. Epub 2015 Oct 14.

16.

Potential of Small Molecule-Mediated Reprogramming of Rod Photoreceptors to Treat Retinitis Pigmentosa.

Nakamura PA, Tang S, Shimchuk AA, Ding S, Reh TA.

Invest Ophthalmol Vis Sci. 2016 Nov 1;57(14):6407-6415. doi: 10.1167/iovs.16-20177.

17.

Glyoxalase 1 enzyme activity in erythrocytes and Ala111Glu polymorphism in type 1-diabetes patients.

Sakhi AK, Berg JP, Berg TJ.

Scand J Clin Lab Invest. 2013 Mar;73(2):175-81. doi: 10.3109/00365513.2013.765028. Epub 2013 Jan 29.

PMID:
23360186
18.

Disease expression in X-linked retinitis pigmentosa caused by a putative null mutation in the RPGR gene.

Jacobson SG, Buraczynska M, Milam AH, Chen C, Järvaläinen M, Fujita R, Wu W, Huang Y, Cideciyan AV, Swaroop A.

Invest Ophthalmol Vis Sci. 1997 Sep;38(10):1983-97.

PMID:
9331262
19.

Genetic rescue models refute nonautonomous rod cell death in retinitis pigmentosa.

Koch SF, Duong JK, Hsu CW, Tsai YT, Lin CS, Wahl-Schott CA, Tsang SH.

Proc Natl Acad Sci U S A. 2017 May 16;114(20):5259-5264. doi: 10.1073/pnas.1615394114. Epub 2017 May 3. Erratum in: Proc Natl Acad Sci U S A. 2017 Jun 19;:.

20.

No association between common variants in glyoxalase 1 and autism spectrum disorders.

Rehnström K, Ylisaukko-Oja T, Vanhala R, von Wendt L, Peltonen L, Hovatta I.

Am J Med Genet B Neuropsychiatr Genet. 2008 Jan 5;147B(1):124-7.

PMID:
17722011

Supplemental Content

Support Center