Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105


Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa Toxicity to Spodoptera frugiperda by Domain III Mutations Indicates There Are Two Limiting Steps in Toxicity as Defined by Receptor Binding and Protein Stability.

Gómez I, Ocelotl J, Sánchez J, Lima C, Martins E, Rosales-Juárez A, Aguilar-Medel S, Abad A, Dong H, Monnerat R, Peña G, Zhang J, Nelson M, Wu G, Bravo A, Soberón M.

Appl Environ Microbiol. 2018 Oct 1;84(20). pii: e01393-18. doi: 10.1128/AEM.01393-18. Print 2018 Oct 15.


Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda.

Hernández-Rodríguez CS, Hernández-Martínez P, Van Rie J, Escriche B, Ferré J.

PLoS One. 2013 Jul 5;8(7):e68164. doi: 10.1371/journal.pone.0068164. Print 2013.


Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins.

Monnerat R, Martins E, Macedo C, Queiroz P, Praça L, Soares CM, Moreira H, Grisi I, Silva J, Soberon M, Bravo A.

PLoS One. 2015 Apr 1;10(4):e0119544. doi: 10.1371/journal.pone.0119544. eCollection 2015.


Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin.

Arenas I, Bravo A, Soberón M, Gómez I.

J Biol Chem. 2010 Apr 23;285(17):12497-503. doi: 10.1074/jbc.M109.085266. Epub 2010 Feb 22.


Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism.

Rahman K, Abdullah MA, Ambati S, Taylor MD, Adang MJ.

Appl Environ Microbiol. 2012 Jan;78(2):354-62. doi: 10.1128/AEM.06212-11. Epub 2011 Nov 11.


Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression.

Jakka SRK, Gong L, Hasler J, Banerjee R, Sheets JJ, Narva K, Blanco CA, Jurat-Fuentes JL.

Appl Environ Microbiol. 2015 Dec 4;82(4):1023-1034. doi: 10.1128/AEM.02871-15. Print 2016 Feb 15.


Spodoptera frugiperda (J. E. Smith) Aminopeptidase N1 Is a Functional Receptor of the Bacillus thuringiensis Cry1Ca Toxin.

Gómez I, Rodríguez-Chamorro DE, Flores-Ramírez G, Grande R, Zúñiga F, Portugal FJ, Sánchez J, Pacheco S, Bravo A, Soberón M.

Appl Environ Microbiol. 2018 Aug 17;84(17). pii: e01089-18. doi: 10.1128/AEM.01089-18. Print 2018 Sep 1.


Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta.

Gómez I, Arenas I, Benitez I, Miranda-Ríos J, Becerril B, Grande R, Almagro JC, Bravo A, Soberón M.

J Biol Chem. 2006 Nov 10;281(45):34032-9. Epub 2006 Sep 12.


Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 Proteins in Spodoptera frugiperda Control.

Soares Figueiredo C, Nunes Lemes AR, Sebastião I, Desidério JA.

Appl Biochem Biotechnol. 2019 Jul;188(3):798-809. doi: 10.1007/s12010-019-02952-z. Epub 2019 Jan 31.


Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens.

Bel Y, Sheets JJ, Tan SY, Narva KE, Escriche B.

Appl Environ Microbiol. 2017 May 17;83(11). pii: e00326-17. doi: 10.1128/AEM.00326-17. Print 2017 Jun 1.


Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.

Sousa FF, Mendes SM, Santos-Amaya OF, Araújo OG, Oliveira EE, Pereira EJ.

PLoS One. 2016 May 31;11(5):e0156608. doi: 10.1371/journal.pone.0156608. eCollection 2016.


Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda.

Martínez de Castro DL, García-Gómez BI, Gómez I, Bravo A, Soberón M.

Peptides. 2017 Dec;98:99-105. doi: 10.1016/j.peptides.2017.09.013. Epub 2017 Sep 27.


Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis.

Flores-Escobar B, Rodríguez-Magadan H, Bravo A, Soberón M, Gómez I.

Appl Environ Microbiol. 2013 Aug;79(15):4543-50. doi: 10.1128/AEM.01062-13. Epub 2013 May 17.


Spodoptera frugiperda (J.E. Smith) with field-evolved resistance to Bt maize are susceptible to Bt pesticides.

Jakka SR, Knight VR, Jurat-Fuentes JL.

J Invertebr Pathol. 2014 Oct;122:52-4. doi: 10.1016/j.jip.2014.08.009. Epub 2014 Sep 8.


Insecticidal activity of Bacillus thuringiensis Cry1Bh1 against Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae) and other lepidopteran pests.

Lira J, Beringer J, Burton S, Griffin S, Sheets J, Tan SY, Woosley A, Worden S, Narva KE.

Appl Environ Microbiol. 2013 Dec;79(24):7590-7. doi: 10.1128/AEM.01979-13. Epub 2013 Sep 27.


Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins.

Carmona D, Rodríguez-Almazán C, Muñoz-Garay C, Portugal L, Pérez C, de Maagd RA, Bakker P, Soberón M, Bravo A.

PLoS One. 2011;6(5):e19952. doi: 10.1371/journal.pone.0019952. Epub 2011 May 16.


Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

Bernardi D, Salmeron E, Horikoshi RJ, Bernardi O, Dourado PM, Carvalho RA, Martinelli S, Head GP, Omoto C.

PLoS One. 2015 Oct 16;10(10):e0140130. doi: 10.1371/journal.pone.0140130. eCollection 2015.


Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1.

Portugal L, Gringorten JL, Caputo GF, Soberón M, Muñoz-Garay C, Bravo A.

Peptides. 2014 Mar;53:292-9. doi: 10.1016/j.peptides.2013.10.026. Epub 2013 Nov 1.


Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a "ping pong" binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors.

Pacheco S, Gómez I, Arenas I, Saab-Rincon G, Rodríguez-Almazán C, Gill SS, Bravo A, Soberón M.

J Biol Chem. 2009 Nov 20;284(47):32750-7. doi: 10.1074/jbc.M109.024968. Epub 2009 Oct 6.

Supplemental Content

Support Center