Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Highly Efficient Phosphoproteome Capture and Analysis from Urinary Extracellular Vesicles.

Wu X, Li L, Iliuk A, Tao WA.

J Proteome Res. 2018 Sep 7;17(9):3308-3316. doi: 10.1021/acs.jproteome.8b00459. Epub 2018 Aug 17.

PMID:
30080416
2.

Phosphoproteins in extracellular vesicles as candidate markers for breast cancer.

Chen IH, Xue L, Hsu CC, Paez JS, Pan L, Andaluz H, Wendt MK, Iliuk AB, Zhu JK, Tao WA.

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3175-3180. doi: 10.1073/pnas.1618088114. Epub 2017 Mar 7.

3.

Exodisc for Rapid, Size-Selective, and Efficient Isolation and Analysis of Nanoscale Extracellular Vesicles from Biological Samples.

Woo HK, Sunkara V, Park J, Kim TH, Han JR, Kim CJ, Choi HI, Kim YK, Cho YK.

ACS Nano. 2017 Feb 28;11(2):1360-1370. doi: 10.1021/acsnano.6b06131. Epub 2017 Jan 17.

PMID:
28068467
4.

Isolation of Extracellular Vesicles by Ultracentrifugation.

Momen-Heravi F.

Methods Mol Biol. 2017;1660:25-32. doi: 10.1007/978-1-4939-7253-1_3.

PMID:
28828645
5.

Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct.

Xu R, Greening DW, Rai A, Ji H, Simpson RJ.

Methods. 2015 Oct 1;87:11-25. doi: 10.1016/j.ymeth.2015.04.008. Epub 2015 Apr 16.

PMID:
25890246
6.

Charge-based precipitation of extracellular vesicles.

Deregibus MC, Figliolini F, D'Antico S, Manzini PM, Pasquino C, De Lena M, Tetta C, Brizzi MF, Camussi G.

Int J Mol Med. 2016 Nov;38(5):1359-1366. doi: 10.3892/ijmm.2016.2759. Epub 2016 Sep 29.

7.

Feasibility of urinary extracellular vesicle proteome profiling using a robust and simple, clinically applicable isolation method.

Bijnsdorp IV, Maxouri O, Kardar A, Schelfhorst T, Piersma SR, Pham TV, Vis A, van Moorselaar RJ, Jimenez CR.

J Extracell Vesicles. 2017 Apr 28;6(1):1313091. doi: 10.1080/20013078.2017.1313091. eCollection 2017.

8.

Evaluation of optimal extracellular vesicle small RNA isolation and qRT-PCR normalisation for serum and urine.

Crossland RE, Norden J, Bibby LA, Davis J, Dickinson AM.

J Immunol Methods. 2016 Feb;429:39-49. doi: 10.1016/j.jim.2015.12.011. Epub 2015 Dec 23.

PMID:
26723490
9.

The Exosome Total Isolation Chip.

Liu F, Vermesh O, Mani V, Ge TJ, Madsen SJ, Sabour A, Hsu EC, Gowrishankar G, Kanada M, Jokerst JV, Sierra RG, Chang E, Lau K, Sridhar K, Bermudez A, Pitteri SJ, Stoyanova T, Sinclair R, Nair VS, Gambhir SS, Demirci U.

ACS Nano. 2017 Nov 28;11(11):10712-10723. doi: 10.1021/acsnano.7b04878. Epub 2017 Nov 1.

10.

Isolation of Extracellular Vesicles for Cancer Diagnosis and Functional Studies.

Brenner AW, Su GH, Momen-Heravi F.

Methods Mol Biol. 2019;1882:229-237. doi: 10.1007/978-1-4939-8879-2_21.

PMID:
30378059
11.

A Method for Isolation of Extracellular Vesicles and Characterization of Exosomes from Brain Extracellular Space.

Pérez-González R, Gauthier SA, Kumar A, Saito M, Saito M, Levy E.

Methods Mol Biol. 2017;1545:139-151.

PMID:
27943212
12.

Metabolomic Profiling of Extracellular Vesicles and Alternative Normalization Methods Reveal Enriched Metabolites and Strategies to Study Prostate Cancer-Related Changes.

Puhka M, Takatalo M, Nordberg ME, Valkonen S, Nandania J, Aatonen M, Yliperttula M, Laitinen S, Velagapudi V, Mirtti T, Kallioniemi O, Rannikko A, Siljander PR, Af Hällström TM.

Theranostics. 2017 Aug 23;7(16):3824-3841. doi: 10.7150/thno.19890. eCollection 2017.

13.

Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication.

Tong M, Kleffmann T, Pradhan S, Johansson CL, DeSousa J, Stone PR, James JL, Chen Q, Chamley LW.

Hum Reprod. 2016 Apr;31(4):687-99. doi: 10.1093/humrep/dew004. Epub 2016 Feb 1.

PMID:
26839151
15.

Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples.

Smith JT, Wunsch BH, Dogra N, Ahsen ME, Lee K, Yadav KK, Weil R, Pereira MA, Patel JV, Duch EA, Papalia JM, Lofaro MF, Gupta M, Tewari AK, Cordon-Cardo C, Stolovitzky G, Gifford SM.

Lab Chip. 2018 Dec 4;18(24):3913-3925. doi: 10.1039/c8lc01017j.

PMID:
30468237
16.

Electric Field-Induced Disruption and Releasing Viable Content from Extracellular Vesicles.

Wang C, Wang A, Wei F, Wong DTW, Tu M.

Methods Mol Biol. 2017;1660:367-376. doi: 10.1007/978-1-4939-7253-1_30.

PMID:
28828672
17.

Isolation of High-Purity Extracellular Vesicles by the Combination of Iodixanol Density Gradient Ultracentrifugation and Bind-Elute Chromatography From Blood Plasma.

Onódi Z, Pelyhe C, Terézia Nagy C, Brenner GB, Almási L, Kittel Á, Manček-Keber M, Ferdinandy P, Buzás EI, Giricz Z.

Front Physiol. 2018 Oct 23;9:1479. doi: 10.3389/fphys.2018.01479. eCollection 2018.

18.

Evidence for Adipocyte-Derived Extracellular Vesicles in the Human Circulation.

Connolly KD, Wadey RM, Mathew D, Johnson E, Rees DA, James PE.

Endocrinology. 2018 Sep 1;159(9):3259-3267. doi: 10.1210/en.2018-00266.

19.

A novel method for the isolation of extracellular vesicles and RNA from urine.

Markowska A, Pendergrast RS, Pendergrast JS, Pendergrast PS.

J Circ Biomark. 2017 Jun 12;6:1849454417712666. doi: 10.1177/1849454417712666. eCollection 2017 Jan-Dec.

20.

Altered Proteome of Extracellular Vesicles Derived from Bladder Cancer Patients Urine.

Lee J, McKinney KQ, Pavlopoulos AJ, Niu M, Kang JW, Oh JW, Kim KP, Hwang S.

Mol Cells. 2018 Mar 31;41(3):179-187. doi: 10.14348/molcells.2018.2110. Epub 2018 Mar 9.

Supplemental Content

Support Center