Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Comparison of ethanol tolerance between potential cyanobacterial production hosts.

Kämäräinen J, Nylund M, Aro EM, Kallio P.

J Biotechnol. 2018 Oct 10;283:140-145. doi: 10.1016/j.jbiotec.2018.07.034. Epub 2018 Jul 27.

2.

Improved Free Fatty Acid Production in Cyanobacteria with Synechococcus sp. PCC 7002 as Host.

Ruffing AM.

Front Bioeng Biotechnol. 2014 May 26;2:17. doi: 10.3389/fbioe.2014.00017. eCollection 2014.

3.

Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002.

Kopka J, Schmidt S, Dethloff F, Pade N, Berendt S, Schottkowski M, Martin N, Dühring U, Kuchmina E, Enke H, Kramer D, Wilde A, Hagemann M, Friedrich A.

Biotechnol Biofuels. 2017 Mar 6;10:56. doi: 10.1186/s13068-017-0741-0. eCollection 2017.

4.

RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803.

Wang J, Chen L, Huang S, Liu J, Ren X, Tian X, Qiao J, Zhang W.

Biotechnol Biofuels. 2012 Dec 21;5(1):89. doi: 10.1186/1754-6834-5-89.

5.

Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment.

Aikawa S, Nishida A, Ho SH, Chang JS, Hasunuma T, Kondo A.

Biotechnol Biofuels. 2014 Jun 11;7:88. doi: 10.1186/1754-6834-7-88. eCollection 2014.

6.

Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803.

Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X, Zhang W.

J Proteome Res. 2012 Nov 2;11(11):5286-300. doi: 10.1021/pr300504w. Epub 2012 Oct 23.

PMID:
23062023
7.

Oxidation of P700 in Photosystem I Is Essential for the Growth of Cyanobacteria.

Shimakawa G, Shaku K, Miyake C.

Plant Physiol. 2016 Nov;172(3):1443-1450. Epub 2016 Sep 9.

8.

Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress.

Ozturk S, Aslim B.

Environ Sci Pollut Res Int. 2010 Mar;17(3):595-602. doi: 10.1007/s11356-009-0233-2. Epub 2009 Sep 1.

PMID:
19727881
9.

Label-Free Analysis and Sorting of Microalgae and Cyanobacteria in Microdroplets by Intrinsic Chlorophyll Fluorescence for the Identification of Fast Growing Strains.

Best RJ, Lyczakowski JJ, Abalde-Cela S, Yu Z, Abell C, Smith AG.

Anal Chem. 2016 Nov 1;88(21):10445-10451. Epub 2016 Oct 21.

10.

Modified in situ antimicrobial susceptibility testing method based on cyanobacteria chlorophyll a fluorescence.

Heliopoulos NS, Galeou A, Papageorgiou SK, Favvas EP, Katsaros FK, Stamatakis K.

J Microbiol Methods. 2016 Feb;121:1-4. doi: 10.1016/j.mimet.2015.12.005. Epub 2015 Dec 5.

PMID:
26666516
11.
12.

Common freshwater cyanobacteria grow in 100% CO2.

Thomas DJ, Sullivan SL, Price AL, Zimmerman SM.

Astrobiology. 2005 Feb;5(1):66-74.

PMID:
15711170
13.

Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling.

Erdrich P, Knoop H, Steuer R, Klamt S.

Microb Cell Fact. 2014 Sep 19;13:128. doi: 10.1186/s12934-014-0128-x.

14.

A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803.

Song Z, Chen L, Wang J, Lu Y, Jiang W, Zhang W.

Mol Cell Proteomics. 2014 Dec;13(12):3519-32. doi: 10.1074/mcp.M113.035675. Epub 2014 Sep 19.

15.

Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803.

Vidal R.

Appl Microbiol Biotechnol. 2017 Apr;101(8):3473-3482. doi: 10.1007/s00253-017-8138-3. Epub 2017 Feb 3.

PMID:
28160048
16.

Optimizing cyanobacteria growth conditions in a sealed environment to enable chemical inhibition tests with volatile chemicals.

Johnson TJ, Zahler JD, Baldwin EL, Zhou R, Gibbons WR.

J Microbiol Methods. 2016 Jul;126:54-9. doi: 10.1016/j.mimet.2016.05.011. Epub 2016 May 16.

PMID:
27196637
17.

Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation.

Möllers KB, Cannella D, Jørgensen H, Frigaard NU.

Biotechnol Biofuels. 2014 Apr 17;7:64. doi: 10.1186/1754-6834-7-64. eCollection 2014.

18.

A simple method for isolation and construction of markerless cyanobacterial mutants defective in acyl-acyl carrier protein synthetase.

Kojima K, Keta S, Uesaka K, Kato A, Takatani N, Ihara K, Omata T, Aichi M.

Appl Microbiol Biotechnol. 2016 Dec;100(23):10107-10113. Epub 2016 Oct 4.

19.

Specific photosynthetic rate enhancement by cyanobacteria coated onto paper enables engineering of highly reactive cellular biocomposite "leaves".

Bernal OI, Mooney CB, Flickinger MC.

Biotechnol Bioeng. 2014 Oct;111(10):1993-2008. doi: 10.1002/bit.25280. Epub 2014 Jul 18.

PMID:
24890862
20.

Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect.

Raanan H, Oren N, Treves H, Keren N, Ohad I, Berkowicz SM, Hagemann M, Koch M, Shotland Y, Kaplan A.

Biochim Biophys Acta. 2016 Jun;1857(6):715-22. doi: 10.1016/j.bbabio.2016.02.007. Epub 2016 Feb 16.

Supplemental Content

Support Center