Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Autophagy Governs Protumorigenic Effects of Mitotic Slippage-induced Senescence.

Jakhar R, Luijten MNH, Wong AXF, Cheng B, Guo K, Neo SP, Au B, Kulkarni M, Lim KJ, Maimaiti J, Chong HC, Lim EH, Tan TBK, Ong KW, Sim Y, Wong JSL, Khoo JBK, Ho JTS, Chua BT, Sinha I, Wang X, Connolly JE, Gunaratne J, Crasta KC.

Mol Cancer Res. 2018 Nov;16(11):1625-1640. doi: 10.1158/1541-7786.MCR-18-0024. Epub 2018 Jul 23.

PMID:
30037855
2.

Consequences of mitotic slippage for antimicrotubule drug therapy.

Cheng B, Crasta K.

Endocr Relat Cancer. 2017 Sep;24(9):T97-T106. doi: 10.1530/ERC-17-0147. Epub 2017 Jul 6. Review.

PMID:
28684541
3.

PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma.

Restall IJ, Parolin DA, Daneshmand M, Hanson JE, Simard MA, Fitzpatrick ME, Kumar R, Lavictoire SJ, Lorimer IA.

Cell Cycle. 2015;14(18):2938-48. doi: 10.1080/15384101.2015.1071744.

4.
5.

Differential Radiation Sensitivity in p53 Wild-Type and p53-Deficient Tumor Cells Associated with Senescence but not Apoptosis or (Nonprotective) Autophagy.

Xu J, Patel NH, Saleh T, Cudjoe EK Jr, Alotaibi M, Wu Y, Lima S, Hawkridge AM, Gewirtz DA.

Radiat Res. 2018 Nov;190(5):538-557. doi: 10.1667/RR15099.1. Epub 2018 Aug 22.

PMID:
30132722
6.

Caspase-3-dependent mitotic checkpoint inactivation by the small-molecule inducers of mitotic slippage SU6656 and geraldol.

Riffell JL, Jänicke RU, Roberge M.

Mol Cancer Ther. 2011 May;10(5):839-49. doi: 10.1158/1535-7163.MCT-10-0909. Epub 2011 Mar 25.

7.

Post-slippage multinucleation renders cytotoxic variation in anti-mitotic drugs that target the microtubules or mitotic spindle.

Zhu Y, Zhou Y, Shi J.

Cell Cycle. 2014;13(11):1756-64. doi: 10.4161/cc.28672. Epub 2014 Apr 2.

8.

Tumor-Associated Macrophages Suppress the Cytotoxic Activity of Antimitotic Agents.

Olson OC, Kim H, Quail DF, Foley EA, Joyce JA.

Cell Rep. 2017 Apr 4;19(1):101-113. doi: 10.1016/j.celrep.2017.03.038.

9.

Pseudolaric acid B induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma l929 cell.

Yu Jh, Liu Cy, Zheng Gb, Zhang LY, Yan Mh, Zhang Wy, Meng Xy, Yu Xf.

Int J Med Sci. 2013 Apr 9;10(6):707-18. doi: 10.7150/ijms.5726. Print 2013.

10.

Synthetic lethal metabolic targeting of cellular senescence in cancer therapy.

Dörr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Däbritz JH, Lisec J, Lenze D, Gerhardt A, Schleicher K, Kratzat S, Purfürst B, Walenta S, Mueller-Klieser W, Gräler M, Hummel M, Keller U, Buck AK, Dörken B, Willmitzer L, Reimann M, Kempa S, Lee S, Schmitt CA.

Nature. 2013 Sep 19;501(7467):421-5. doi: 10.1038/nature12437. Epub 2013 Aug 14.

PMID:
23945590
11.

SIRT2 knockdown increases basal autophagy and prevents postslippage death by abnormally prolonging the mitotic arrest that is induced by microtubule inhibitors.

Inoue T, Nakayama Y, Li Y, Matsumori H, Takahashi H, Kojima H, Wanibuchi H, Katoh M, Oshimura M.

FEBS J. 2014 Jun;281(11):2623-37. doi: 10.1111/febs.12810. Epub 2014 Apr 30.

12.

Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction.

Orth JD, Loewer A, Lahav G, Mitchison TJ.

Mol Biol Cell. 2012 Feb;23(4):567-76. doi: 10.1091/mbc.E11-09-0781. Epub 2011 Dec 14.

13.

Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy.

Giovinazzi S, Bellapu D, Morozov VM, Ishov AM.

Cell Cycle. 2013 Aug 15;12(16):2598-607. doi: 10.4161/cc.25591. Epub 2013 Jul 9.

14.

Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy.

Wang J, Qi Q, Zhou W, Feng Z, Huang B, Chen A, Zhang D, Li W, Zhang Q, Jiang Z, Bjerkvig R, Prestegarden L, Thorsen F, Wang X, Li X, Wang J.

Autophagy. 2018;14(11):2007-2022. doi: 10.1080/15548627.2018.1501133. Epub 2018 Aug 17.

PMID:
30025493
15.

Effects of chemical manipulation of mitotic arrest and slippage on cancer cell survival and proliferation.

Riffell JL, Zimmerman C, Khong A, McHardy LM, Roberge M.

Cell Cycle. 2009 Sep 15;8(18):3025-38. Epub 2009 Sep 25.

PMID:
19713760
16.

Assessing Functional Roles of the Senescence-Associated Secretory Phenotype (SASP).

Malaquin N, Tu V, Rodier F.

Methods Mol Biol. 2019;1896:45-55. doi: 10.1007/978-1-4939-8931-7_6.

PMID:
30474839
17.

Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype.

Coppé JP, Rodier F, Patil CK, Freund A, Desprez PY, Campisi J.

J Biol Chem. 2011 Oct 21;286(42):36396-403. doi: 10.1074/jbc.M111.257071. Epub 2011 Aug 31.

18.

SASP: Tumor Suppressor or Promoter? Yes!

Rao SG, Jackson JG.

Trends Cancer. 2016 Nov;2(11):676-687. doi: 10.1016/j.trecan.2016.10.001. Epub 2016 Oct 24. Review.

PMID:
28741506
19.

Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism.

Wang R, Yu Z, Sunchu B, Shoaf J, Dang I, Zhao S, Caples K, Bradley L, Beaver LM, Ho E, Löhr CV, Perez VI.

Aging Cell. 2017 Jun;16(3):564-574. doi: 10.1111/acel.12587. Epub 2017 Mar 31.

20.

MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype.

Chen H, Ruiz PD, McKimpson WM, Novikov L, Kitsis RN, Gamble MJ.

Mol Cell. 2015 Sep 3;59(5):719-31. doi: 10.1016/j.molcel.2015.07.011. Epub 2015 Aug 20.

Supplemental Content

Support Center