Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

[Impact of Ammonia and H2O2 on Bromate and Disinfection By-products Control].

Wang YJ, Du X, Jin M, Feng SJ, Yang K, Zhang ML, Yu JW.

Huan Jing Ke Xue. 2017 Feb 8;38(2):616-621. doi: 10.13227/j.hjkx.201605091. Chinese.

PMID:
29964518
2.

Advanced oxidation of bromide-containing drinking water: a balance between bromate and trihalomethane formation control.

Wang Y, Yu J, Han P, Sha J, An T, Li W, Liu J, Yang M.

J Environ Sci (China). 2013 Nov 1;25(11):2169-76.

PMID:
24552044
3.

Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water.

Bourgin M, Borowska E, Helbing J, Hollender J, Kaiser HP, Kienle C, McArdell CS, Simon E, von Gunten U.

Water Res. 2017 Oct 1;122:234-245. doi: 10.1016/j.watres.2017.05.018. Epub 2017 May 11.

PMID:
28601791
4.

Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone.

Wang Y, Yu J, Zhang D, Yang M.

J Environ Sci (China). 2014 Mar 1;26(3):550-4. doi: 10.1016/S1001-0742(13)60409-X.

PMID:
25079267
5.

MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation.

Acero JL, Haderlein SB, Schmidt TC, Suter MJ, von Gunten U.

Environ Sci Technol. 2001 Nov 1;35(21):4252-9.

PMID:
11718338
6.

Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation.

Lin T, Wu S, Chen W.

Environ Sci Pollut Res Int. 2014 Dec;21(24):13987-4003. doi: 10.1007/s11356-014-3329-2. Epub 2014 Jul 19.

PMID:
25035057
7.

Effect of magnetic ion exchange and ozonation on disinfection by-product formation.

Kingsbury RS, Singer PC.

Water Res. 2013 Mar 1;47(3):1060-72. doi: 10.1016/j.watres.2012.11.015. Epub 2012 Nov 28.

PMID:
23286989
8.

Pathway fraction of bromate formation during O₃ and O₃/H₂O₂ processes in drinking water treatment.

Qi S, Mao Y, Lv M, Sun L, Wang X, Yang H, Xie YF.

Chemosphere. 2016 Feb;144:2436-42. doi: 10.1016/j.chemosphere.2015.11.022. Epub 2015 Nov 23.

PMID:
26615492
9.

The removal of organic precursors of DBPs during three advanced water treatment processes including ultrafiltration, biofiltration, and ozonation.

Zha XS, Ma LM, Wu J, Liu Y.

Environ Sci Pollut Res Int. 2016 Aug;23(16):16641-52. doi: 10.1007/s11356-016-6643-z. Epub 2016 May 16.

PMID:
27180835
10.

Impact of H2O2 and (bi)carbonate alkalinity on ammonia's inhibition of bromate formation.

Hofmann R, Andrews RC.

Water Res. 2006 Oct;40(18):3343-8. Epub 2006 Sep 12.

PMID:
16970973
11.

Options and limitations for bromate control during ozonation of wastewater.

Soltermann F, Abegglen C, Tschui M, Stahel S, von Gunten U.

Water Res. 2017 Jun 1;116:76-85. doi: 10.1016/j.watres.2017.02.026. Epub 2017 Feb 14.

PMID:
28314210
12.

Optimization of ozonation and peroxone process for simultaneous control of micropollutants and bromate in wastewater.

Phattarapattamawong S, Kaiser AM, Saracevic E, Schaar HP, Krampe J.

Water Sci Technol. 2018 May;2017(2):404-411. doi: 10.2166/wst.2018.170.

PMID:
29851392
13.

Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.

Mao Y, Guo D, Yao W, Wang X, Yang H, Xie YF, Komarneni S, Yu G, Wang Y.

Water Res. 2018 Mar 1;130:322-332. doi: 10.1016/j.watres.2017.12.019. Epub 2017 Dec 11.

PMID:
29247948
14.

Pilot study on bromate reduction in ozonation of water with low carbonate alkalinities by carbon dioxide.

Li J, Zou L, Guo L, Ji J.

J Environ Sci (China). 2011;23(9):1491-6.

PMID:
22432285
15.

Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O3, and an electro-peroxone process.

Yao W, Ur Rehman SW, Wang H, Yang H, Yu G, Wang Y.

Water Res. 2018 Jul 1;138:106-117. doi: 10.1016/j.watres.2018.03.044. Epub 2018 Mar 16.

PMID:
29574198
16.

Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process.

Yao W, Qu Q, von Gunten U, Chen C, Yu G, Wang Y.

Water Res. 2017 Jan 1;108:373-382. doi: 10.1016/j.watres.2016.11.014. Epub 2016 Nov 4.

PMID:
27839831
17.

Evaluation of disinfection by-products formation during ozonation of bromide-containing groundwater.

Huang WJ, Tsai YY, Chu C.

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2003;38(12):2919-31.

PMID:
14672325
18.

Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products.

Bourgin M, Beck B, Boehler M, Borowska E, Fleiner J, Salhi E, Teichler R, von Gunten U, Siegrist H, McArdell CS.

Water Res. 2018 Feb 1;129:486-498. doi: 10.1016/j.watres.2017.10.036. Epub 2017 Oct 20.

PMID:
29190578
19.

Enhanced bromate control during ozonation: the chlorine-ammonia process.

Buffle MO, Galli S, von Gunten U.

Environ Sci Technol. 2004 Oct 1;38(19):5187-95.

PMID:
15506216
20.

Bromide Sources and Loads in Swiss Surface Waters and Their Relevance for Bromate Formation during Wastewater Ozonation.

Soltermann F, Abegglen C, Götz C, von Gunten U.

Environ Sci Technol. 2016 Sep 20;50(18):9825-34. doi: 10.1021/acs.est.6b01142. Epub 2016 Sep 2.

PMID:
27525579

Supplemental Content

Support Center