Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Evaluation at scale of microbiome-derived metabolites as biomarker of flavan-3-ol intake in epidemiological studies.

Ottaviani JI, Fong R, Kimball J, Ensunsa JL, Britten A, Lucarelli D, Luben R, Grace PB, Mawson DH, Tym A, Wierzbicki A, Khaw KT, Schroeter H, Kuhnle GGC.

Sci Rep. 2018 Jun 29;8(1):9859. doi: 10.1038/s41598-018-28333-w.

2.

Nutrition epidemiology of flavan-3-ols: The known unknowns.

Kuhnle GGC.

Mol Aspects Med. 2018 Jun;61:2-11. doi: 10.1016/j.mam.2017.10.003. Epub 2017 Nov 16. Review.

3.

Dietary intakes of flavan-3-ols and cardiovascular health: a field synopsis using evidence mapping of randomized trials and prospective cohort studies.

Raman G, Shams-White M, Avendano EE, Chen F, Novotny JA, Cassidy A.

Syst Rev. 2018 Jul 18;7(1):100. doi: 10.1186/s13643-018-0764-z. Review.

4.

Associations between flavan-3-ol intake and CVD risk in the Norfolk cohort of the European Prospective Investigation into Cancer (EPIC-Norfolk).

Vogiatzoglou A, Mulligan AA, Bhaniani A, Lentjes MAH, McTaggart A, Luben RN, Heiss C, Kelm M, Merx MW, Spencer JPE, Schroeter H, Khaw KT, Kuhnle GGC.

Free Radic Biol Med. 2015 Jul;84:1-10. doi: 10.1016/j.freeradbiomed.2015.03.005. Epub 2015 Mar 17.

5.

Assessment of the dietary intake of total flavan-3-ols, monomeric flavan-3-ols, proanthocyanidins and theaflavins in the European Union.

Vogiatzoglou A, Mulligan AA, Luben RN, Lentjes MA, Heiss C, Kelm M, Merx MW, Spencer JP, Schroeter H, Kuhnle GG.

Br J Nutr. 2014 Apr 28;111(8):1463-73. doi: 10.1017/S0007114513003930. Epub 2013 Dec 13.

PMID:
24331295
6.

Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study.

Knaze V, Zamora-Ros R, Luján-Barroso L, Romieu I, Scalbert A, Slimani N, Riboli E, van Rossum CT, Bueno-de-Mesquita HB, Trichopoulou A, Dilis V, Tsiotas K, Skeie G, Engeset D, Quirós JR, Molina E, Huerta JM, Crowe F, Wirfäl E, Ericson U, Peeters PH, Kaaks R, Teucher B, Johansson G, Johansson I, Tumino R, Boeing H, Drogan D, Amiano P, Mattiello A, Khaw KT, Luben R, Krogh V, Ardanáz E, Sacerdote C, Salvini S, Overvad K, Tjønneland A, Olsen A, Boutron-Ruault MC, Fagherazzi G, Perquier F, González CA.

Br J Nutr. 2012 Sep 28;108(6):1095-108. doi: 10.1017/S0007114511006386. Epub 2011 Dec 20.

PMID:
22186699
7.

Evaluation of (-)-epicatechin metabolites as recovery biomarker of dietary flavan-3-ol intake.

Ottaviani JI, Fong R, Kimball J, Ensunsa JL, Gray N, Vogiatzoglou A, Britten A, Lucarelli D, Luben R, Grace PB, Mawson DH, Tym A, Wierzbicki A, Smith AD, Wareham NJ, Forouhi NG, Khaw KT, Schroeter H, Kuhnle GGC.

Sci Rep. 2019 Sep 11;9(1):13108. doi: 10.1038/s41598-019-49702-z.

8.

Dietary intakes of flavan-3-ols and cardiometabolic health: systematic review and meta-analysis of randomized trials and prospective cohort studies.

Raman G, Avendano EE, Chen S, Wang J, Matson J, Gayer B, Novotny JA, Cassidy A.

Am J Clin Nutr. 2019 Aug 26. pii: nqz178. doi: 10.1093/ajcn/nqz178. [Epub ahead of print]

PMID:
31504087
9.

Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa flavan-3-ol metabolites in humans.

Mullen W, Borges G, Donovan JL, Edwards CA, Serafini M, Lean ME, Crozier A.

Am J Clin Nutr. 2009 Jun;89(6):1784-91. doi: 10.3945/ajcn.2008.27339. Epub 2009 Apr 29.

PMID:
19403635
10.

Inter-individual variability in the production of flavan-3-ol colonic metabolites: preliminary elucidation of urinary metabotypes.

Mena P, Ludwig IA, Tomatis VB, Acharjee A, Calani L, Rosi A, Brighenti F, Ray S, Griffin JL, Bluck LJ, Del Rio D.

Eur J Nutr. 2019 Jun;58(4):1529-1543. doi: 10.1007/s00394-018-1683-4. Epub 2018 Apr 3.

PMID:
29616322
11.

Influence of formulation and processing on absorption and metabolism of flavan-3-ols from tea and cocoa.

Neilson AP, Ferruzzi MG.

Annu Rev Food Sci Technol. 2011;2:125-51. doi: 10.1146/annurev-food-022510-133725. Review.

PMID:
22129378
12.

Bioavailability of polyphenon E flavan-3-ols in humans with an ileostomy.

Auger C, Mullen W, Hara Y, Crozier A.

J Nutr. 2008 Aug;138(8):1535S-1542S.

PMID:
18641203
13.

Dietary flavan-3-ols intake and metabolic syndrome risk in Korean adults.

Yang YJ, Kim YJ, Yang YK, Kim JY, Kwon O.

Nutr Res Pract. 2012 Feb;6(1):68-77. doi: 10.4162/nrp.2012.6.1.68. Epub 2012 Feb 29.

14.

Flavan-3-ols, theobromine, and the effects of cocoa and chocolate on cardiometabolic risk factors.

Berends LM, van der Velpen V, Cassidy A.

Curr Opin Lipidol. 2015 Feb;26(1):10-9. doi: 10.1097/MOL.0000000000000144. Review.

PMID:
25551798
15.

Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites.

Monagas M, Urpi-Sarda M, Sánchez-Patán F, Llorach R, Garrido I, Gómez-Cordovés C, Andres-Lacueva C, Bartolomé B.

Food Funct. 2010 Dec;1(3):233-53. doi: 10.1039/c0fo00132e. Epub 2010 Nov 17. Review.

PMID:
21776473
16.

Synthesis, analytical features, and biological relevance of 5-(3',4'-dihydroxyphenyl)-γ-valerolactone, a microbial metabolite derived from the catabolism of dietary flavan-3-ols.

Sanchez-Patan F, Chioua M, Garrido I, Cueva C, Samadi A, Marco-Contelles J, Moreno-Arribas MV, Bartolome B, Monagas M.

J Agric Food Chem. 2011 Jul 13;59(13):7083-91. doi: 10.1021/jf2020182. Epub 2011 Jun 16.

PMID:
21627328
17.

Near infra-red characterization of changes in flavan-3-ol derivatives in cocoa (Theobroma cacao L.) as a function of fermentation temperature.

Hue C, Brat P, Gunata Z, Samaniego I, Servent A, Morel G, Kapitan A, Boulanger R, Davrieux F.

J Agric Food Chem. 2014 Oct 15;62(41):10136-42. doi: 10.1021/jf501070d. Epub 2014 Oct 6.

PMID:
25259956
18.

Synthetic and analytical strategies for the quantification of phenyl-γ-valerolactone conjugated metabolites in human urine.

Brindani N, Mena P, Calani L, Benzie I, Choi SW, Brighenti F, Zanardi F, Curti C, Del Rio D.

Mol Nutr Food Res. 2017 Sep;61(9). doi: 10.1002/mnfr.201700077. Epub 2017 Jun 9.

PMID:
28440064
19.

Dietary epicatechin intake and 25-y risk of cardiovascular mortality: the Zutphen Elderly Study.

Dower JI, Geleijnse JM, Hollman PCh, Soedamah-Muthu SS, Kromhout D.

Am J Clin Nutr. 2016 Jul;104(1):58-64. doi: 10.3945/ajcn.115.128819. Epub 2016 May 25.

PMID:
27225434
20.

Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols.

Clifford MN, van der Hooft JJ, Crozier A.

Am J Clin Nutr. 2013 Dec;98(6 Suppl):1619S-1630S. doi: 10.3945/ajcn.113.058958. Epub 2013 Oct 30. Review.

PMID:
24172307

Supplemental Content

Support Center