Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

High Thermal Stability of Oligomeric Assemblies of Thermophilic Rhodopsin in a Lipid Environment.

Shionoya T, Mizuno M, Tsukamoto T, Ikeda K, Seki H, Kojima K, Shibata M, Kawamura I, Sudo Y, Mizutani Y.

J Phys Chem B. 2018 Jul 12;122(27):6945-6953. doi: 10.1021/acs.jpcb.8b04894. Epub 2018 Jun 27. Erratum in: J Phys Chem B. 2018 Oct 25;122(42):9826.

PMID:
29893559
2.

Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile.

Tsukamoto T, Inoue K, Kandori H, Sudo Y.

J Biol Chem. 2013 Jul 26;288(30):21581-92. doi: 10.1074/jbc.M113.479394. Epub 2013 Jun 5.

3.

Irreversible trimer to monomer transition of thermophilic rhodopsin upon thermal stimulation.

Tsukamoto T, Demura M, Sudo Y.

J Phys Chem B. 2014 Oct 30;118(43):12383-94. doi: 10.1021/jp507374q. Epub 2014 Oct 15.

PMID:
25279934
4.

X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION.

Tsukamoto T, Mizutani K, Hasegawa T, Takahashi M, Honda N, Hashimoto N, Shimono K, Yamashita K, Yamamoto M, Miyauchi S, Takagi S, Hayashi S, Murata T, Sudo Y.

J Biol Chem. 2016 Jun 3;291(23):12223-32. doi: 10.1074/jbc.M116.719815. Epub 2016 Apr 18.

5.

Temperature Independence of Ultrafast Photoisomerization in Thermophilic Rhodopsin: Assessment versus Other Microbial Proton Pumps.

Iyer ES, Misra R, Maity A, Liubashevski O, Sudo Y, Sheves M, Ruhman S.

J Am Chem Soc. 2016 Sep 28;138(38):12401-7. doi: 10.1021/jacs.6b05002. Epub 2016 Sep 14.

PMID:
27575402
6.
7.

Structural Evolution of a Retinal Chromophore in the Photocycle of Halorhodopsin from Natronobacterium pharaonis.

Mizuno M, Nakajima A, Kandori H, Mizutani Y.

J Phys Chem A. 2018 Mar 8;122(9):2411-2423. doi: 10.1021/acs.jpca.7b12332. Epub 2018 Feb 26.

PMID:
29460629
8.
9.

FTIR spectroscopy of a light-driven compatible sodium ion-proton pumping rhodopsin at 77 K.

Ono H, Inoue K, Abe-Yoshizumi R, Kandori H.

J Phys Chem B. 2014 May 8;118(18):4784-92. doi: 10.1021/jp500756f. Epub 2014 Apr 28.

PMID:
24773264
10.

Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins.

Furutani Y, Shibata M, Kandori H.

Photochem Photobiol Sci. 2005 Sep;4(9):661-6. Epub 2005 Feb 28.

PMID:
16121274
11.

Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy.

Shibata M, Inoue K, Ikeda K, Konno M, Singh M, Kataoka C, Abe-Yoshizumi R, Kandori H, Uchihashi T.

Sci Rep. 2018 May 29;8(1):8262. doi: 10.1038/s41598-018-26606-y.

12.

Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus.

Kajimoto K, Kikukawa T, Nakashima H, Yamaryo H, Saito Y, Fujisawa T, Demura M, Unno M.

J Phys Chem B. 2017 May 4;121(17):4431-4437. doi: 10.1021/acs.jpcb.7b02421. Epub 2017 Apr 21.

PMID:
28421760
13.

FTIR Analysis of a Light-driven Inward Proton-pumping Rhodopsin at 77 K.

Ito S, Sugita S, Inoue K, Kandori H.

Photochem Photobiol. 2017 Nov;93(6):1381-1387. doi: 10.1111/php.12771. Epub 2017 Jun 22.

PMID:
28380687
14.

Resonance Raman Investigation of the Chromophore Structure of Heliorhodopsins.

Otomo A, Mizuno M, Singh M, Shihoya W, Inoue K, Nureki O, Béjà O, Kandori H, Mizutani Y.

J Phys Chem Lett. 2018 Nov 15;9(22):6431-6436. doi: 10.1021/acs.jpclett.8b02741. Epub 2018 Oct 29.

PMID:
30351947
15.

Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin.

Kandori H, Shimono K, Sudo Y, Iwamoto M, Shichida Y, Kamo N.

Biochemistry. 2001 Aug 7;40(31):9238-46.

PMID:
11478891
16.

Functional consequences of the oligomeric assembly of proteorhodopsin.

Hussain S, Kinnebrew M, Schonenbach NS, Aye E, Han S.

J Mol Biol. 2015 Mar 27;427(6 Pt B):1278-1290. doi: 10.1016/j.jmb.2015.01.004. Epub 2015 Jan 15.

17.
19.

Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization.

Hashimoto K, Choi AR, Furutani Y, Jung KH, Kandori H.

Biochemistry. 2010 Apr 20;49(15):3343-50. doi: 10.1021/bi100184k.

PMID:
20230053
20.

FTIR studies of the photoactivation processes in squid retinochrome.

Furutani Y, Terakita A, Shichida Y, Kandori H.

Biochemistry. 2005 Jun 7;44(22):7988-97.

PMID:
15924417

Supplemental Content

Support Center