Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Self-organized stress patterns drive state transitions in actin cortices.

Tan TH, Malik-Garbi M, Abu-Shah E, Li J, Sharma A, MacKintosh FC, Keren K, Schmidt CF, Fakhri N.

Sci Adv. 2018 Jun 6;4(6):eaar2847. doi: 10.1126/sciadv.aar2847. eCollection 2018 Jun.

2.

Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex.

McFadden WM, McCall PM, Gardel ML, Munro EM.

PLoS Comput Biol. 2017 Dec 18;13(12):e1005811. doi: 10.1371/journal.pcbi.1005811. eCollection 2017 Dec.

3.

Alignment of actin filament streams driven by myosin motors in crowded environments.

Iwase T, Sasaki Y, Hatori K.

Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt A):2717-2725. doi: 10.1016/j.bbagen.2017.07.016. Epub 2017 Jul 25.

PMID:
28754385
4.

Actin network architecture can determine myosin motor activity.

Reymann AC, Boujemaa-Paterski R, Martiel JL, Guérin C, Cao W, Chin HF, De La Cruz EM, Théry M, Blanchoin L.

Science. 2012 Jun 8;336(6086):1310-4. doi: 10.1126/science.1221708.

5.

Self-organizing actin patterns shape membrane architecture but not cell mechanics.

Fritzsche M, Li D, Colin-York H, Chang VT, Moeendarbary E, Felce JH, Sezgin E, Charras G, Betzig E, Eggeling C.

Nat Commun. 2017 Feb 13;8:14347. doi: 10.1038/ncomms14347.

6.

Actin Mechanics and Fragmentation.

De La Cruz EM, Gardel ML.

J Biol Chem. 2015 Jul 10;290(28):17137-44. doi: 10.1074/jbc.R115.636472. Epub 2015 May 8. Review.

7.

Active multistage coarsening of actin networks driven by myosin motors.

Soares e Silva M, Depken M, Stuhrmann B, Korsten M, MacKintosh FC, Koenderink GH.

Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9408-13. doi: 10.1073/pnas.1016616108. Epub 2011 May 18.

8.

F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex.

Murrell MP, Gardel ML.

Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20820-5. doi: 10.1073/pnas.1214753109. Epub 2012 Dec 3.

9.

Theoretical study of actin layers attachment and separation.

Marbach S, Godeau AL, Riveline D, Joanny JF, Prost J.

Eur Phys J E Soft Matter. 2015 Nov;38(11):122. doi: 10.1140/epje/i2015-15122-4. Epub 2015 Nov 25.

PMID:
26590152
10.

Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell.

Nikmaneshi MR, Firoozabadi B, Saidi MS.

J Biomech. 2018 Jan 23;67:37-45. doi: 10.1016/j.jbiomech.2017.11.025. Epub 2017 Dec 2.

PMID:
29217089
11.

Self-organization of actin networks by a monomeric myosin.

Saczko-Brack D, Warchol E, Rogez B, Kröss M, Heissler SM, Sellers JR, Batters C, Veigel C.

Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):E8387-E8395. doi: 10.1073/pnas.1612719113. Epub 2016 Dec 12.

12.

The emergence and transient behaviour of collective motion in active filament systems.

Suzuki R, Bausch AR.

Nat Commun. 2017 Jun 28;8(1):41. doi: 10.1038/s41467-017-00035-3.

13.

Actomyosin-driven left-right asymmetry: from molecular torques to chiral self organization.

Naganathan SR, Middelkoop TC, Fürthauer S, Grill SW.

Curr Opin Cell Biol. 2016 Feb;38:24-30. doi: 10.1016/j.ceb.2016.01.004. Epub 2016 Jan 30. Review.

PMID:
26829488
14.

Electrostatic origin of the unidirectionality of walking myosin V motors.

Mukherjee S, Warshel A.

Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17326-31. doi: 10.1073/pnas.1317641110. Epub 2013 Oct 8.

15.

Determinants of fluidlike behavior and effective viscosity in cross-linked actin networks.

Kim T, Gardel ML, Munro E.

Biophys J. 2014 Feb 4;106(3):526-34. doi: 10.1016/j.bpj.2013.12.031.

16.

Structural transition at actin's N-terminus in the actomyosin cross-bridge cycle.

Hansen JE, Marner J, Pavlov D, Rubenstein PA, Reisler E.

Biochemistry. 2000 Feb 22;39(7):1792-9.

PMID:
10677229
17.

Dynamic mechanisms of cell rigidity sensing: insights from a computational model of actomyosin networks.

Borau C, Kim T, Bidone T, García-Aznar JM, Kamm RD.

PLoS One. 2012;7(11):e49174. doi: 10.1371/journal.pone.0049174. Epub 2012 Nov 5.

18.

Hierarchical self-organization of cytoskeletal active networks.

Gordon D, Bernheim-Groswasser A, Keasar C, Farago O.

Phys Biol. 2012;9(2):026005. doi: 10.1088/1478-3975/9/2/026005. Epub 2012 Apr 4.

PMID:
22476003
19.

Active bundles of polar and bipolar filaments.

Kreten FH, Hoffmann C, Riveline D, Kruse K.

Phys Rev E. 2018 Jul;98(1-1):012413. doi: 10.1103/PhysRevE.98.012413.

PMID:
30110807
20.

Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro.

Shin JH, Gardel ML, Mahadevan L, Matsudaira P, Weitz DA.

Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9636-41. Epub 2004 Jun 21.

Supplemental Content

Support Center