Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

The hunt for the most-wanted chemolithoautotrophic spookmicrobes.

In 't Zandt MH, de Jong AE, Slomp CP, Jetten MS.

FEMS Microbiol Ecol. 2018 Jun 1;94(6). doi: 10.1093/femsec/fiy064.

2.

Enrichment of anaerobic nitrate-dependent methanotrophic 'Candidatus Methanoperedens nitroreducens' archaea from an Italian paddy field soil.

Vaksmaa A, Guerrero-Cruz S, van Alen TA, Cremers G, Ettwig KF, Lüke C, Jetten MSM.

Appl Microbiol Biotechnol. 2017 Sep;101(18):7075-7084. doi: 10.1007/s00253-017-8416-0. Epub 2017 Aug 4.

3.

Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.

Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW.

Nature. 2013 Aug 29;500(7464):567-70. doi: 10.1038/nature12375. Epub 2013 Jul 28. Erratum in: Nature. 2013 Sep 26;501(7468):578.

PMID:
23892779
4.

Nitrate- and nitrite-dependent anaerobic oxidation of methane.

Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJ, Jetten MS, Lüke C, Reimann J.

Environ Microbiol Rep. 2016 Dec;8(6):941-955. doi: 10.1111/1758-2229.12487. Epub 2016 Nov 9. Review.

PMID:
27753265
5.

Anaerobic oxidation of methane: an "active" microbial process.

Cui M, Ma A, Qi H, Zhuang X, Zhuang G.

Microbiologyopen. 2015 Feb;4(1):1-11. doi: 10.1002/mbo3.232. Epub 2014 Dec 22. Review.

6.

Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.

Gambelli L, Guerrero-Cruz S, Mesman RJ, Cremers G, Jetten MSM, Op den Camp HJM, Kartal B, Lueke C, van Niftrik L.

Appl Environ Microbiol. 2018 Jan 17;84(3). pii: e02186-17. doi: 10.1128/AEM.02186-17. Print 2018 Feb 1.

7.

The content of trace element iron is a key factor for competition between anaerobic ammonium oxidation and methane-dependent denitrification processes.

Lu YZ, Fu L, Li N, Ding J, Bai YN, Samaras P, Zeng RJ.

Chemosphere. 2018 May;198:370-376. doi: 10.1016/j.chemosphere.2018.01.172. Epub 2018 Feb 1.

PMID:
29421752
8.

Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate.

Cai C, Hu S, Guo J, Shi Y, Xie GJ, Yuan Z.

Water Res. 2015 Dec 15;87:211-7. doi: 10.1016/j.watres.2015.09.026. Epub 2015 Sep 16.

PMID:
26414889
9.

The nitrogen cycle in anaerobic methanotrophic mats of the Black Sea is linked to sulfate reduction and biomass decomposition.

Siegert M, Taubert M, Seifert J, von Bergen-Tomm M, Basen M, Bastida F, Gehre M, Richnow HH, Krüger M.

FEMS Microbiol Ecol. 2013 Nov;86(2):231-45. doi: 10.1111/1574-6941.12156. Epub 2013 Jul 1.

10.

A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments.

Hu S, Zeng RJ, Haroon MF, Keller J, Lant PA, Tyson GW, Yuan Z.

Sci Rep. 2015 Mar 3;5:8706. doi: 10.1038/srep08706.

11.

Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio.

Arshad A, Dalcin Martins P, Frank J, Jetten MSM, Op den Camp HJM, Welte CU.

Environ Microbiol. 2017 Dec;19(12):4965-4977. doi: 10.1111/1462-2920.13977. Epub 2017 Nov 29.

PMID:
29105249
12.

Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

Fu L, Ding J, Lu YZ, Ding ZW, Zeng RJ.

Appl Microbiol Biotechnol. 2017 May;101(9):3895-3906. doi: 10.1007/s00253-017-8163-2. Epub 2017 Feb 6.

PMID:
28168315
13.

Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field.

Shen LD, Liu S, Huang Q, Lian X, He ZF, Geng S, Jin RC, He YF, Lou LP, Xu XY, Zheng P, Hu BL.

Appl Environ Microbiol. 2014 Dec;80(24):7611-9. doi: 10.1128/AEM.02379-14. Epub 2014 Sep 26.

14.

Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils.

Meng H, Wang YF, Chan HW, Wu RN, Gu JD.

Appl Microbiol Biotechnol. 2016 Sep;100(17):7727-39. doi: 10.1007/s00253-016-7585-6. Epub 2016 May 13.

PMID:
27178181
15.

Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment.

Ino K, Hernsdorf AW, Konno U, Kouduka M, Yanagawa K, Kato S, Sunamura M, Hirota A, Togo YS, Ito K, Fukuda A, Iwatsuki T, Mizuno T, Komatsu DD, Tsunogai U, Ishimura T, Amano Y, Thomas BC, Banfield JF, Suzuki Y.

ISME J. 2018 Jan;12(1):31-47. doi: 10.1038/ismej.2017.140. Epub 2017 Sep 8.

16.

Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments.

Shen LD, Wu HS, Liu X, Li J.

Water Res. 2017 Oct 15;123:162-172. doi: 10.1016/j.watres.2017.06.075. Epub 2017 Jun 27.

PMID:
28668629
17.

Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor.

Chen X, Guo J, Shi Y, Hu S, Yuan Z, Ni BJ.

Environ Sci Technol. 2014 Aug 19;48(16):9540-7. doi: 10.1021/es502608s. Epub 2014 Jul 31.

PMID:
25055054
18.

McrA primers for the detection and quantification of the anaerobic archaeal methanotroph 'Candidatus Methanoperedens nitroreducens'.

Vaksmaa A, Jetten MS, Ettwig KF, Lüke C.

Appl Microbiol Biotechnol. 2017 Feb;101(4):1631-1641. doi: 10.1007/s00253-016-8065-8. Epub 2017 Jan 13.

19.

Archaea catalyze iron-dependent anaerobic oxidation of methane.

Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B.

Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12792-12796. doi: 10.1073/pnas.1609534113. Epub 2016 Oct 24.

20.

Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria.

Zhu B, van Dijk G, Fritz C, Smolders AJ, Pol A, Jetten MS, Ettwig KF.

Appl Environ Microbiol. 2012 Dec;78(24):8657-65. doi: 10.1128/AEM.02102-12. Epub 2012 Oct 5.

Supplemental Content

Support Center