Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 243

1.

Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.

Cronin HM, Stoeva Z, Brown M, Shkunov M, Silva SRP.

ACS Appl Mater Interfaces. 2018 Jun 27;10(25):21398-21410. doi: 10.1021/acsami.8b04157. Epub 2018 Jun 18.

PMID:
29863321
2.

Interface Modified Flexible Printed Conductive Films via Ag2O Nanoparticle Decorated Ag Flake Inks.

Meng Y, Ma T, Pavinatto FJ, MacKenzie JD.

ACS Appl Mater Interfaces. 2019 Mar 6;11(9):9190-9196. doi: 10.1021/acsami.8b20057. Epub 2019 Feb 20.

PMID:
30742404
3.

Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.

Rager MS, Aytug T, Veith GM, Joshi P.

ACS Appl Mater Interfaces. 2016 Jan 27;8(3):2441-8. doi: 10.1021/acsami.5b12156. Epub 2016 Jan 12.

PMID:
26720684
4.

Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.

Shen W, Zhang X, Huang Q, Xu Q, Song W.

Nanoscale. 2014;6(3):1622-8. doi: 10.1039/c3nr05479a.

PMID:
24337051
5.

Printed Strain Gauge on 3D and Low-Melting Point Plastic Surface by Aerosol Jet Printing and Photonic Curing.

Borghetti M, Serpelloni M, Sardini E.

Sensors (Basel). 2019 Sep 28;19(19). pii: E4220. doi: 10.3390/s19194220.

6.

Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.

Ding J, Liu J, Tian Q, Wu Z, Yao W, Dai Z, Liu L, Wu W.

Nanoscale Res Lett. 2016 Dec;11(1):412. doi: 10.1186/s11671-016-1640-1. Epub 2016 Sep 20.

7.

UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.

Hong H, Hu J, Yan X.

ACS Appl Mater Interfaces. 2019 Jul 31;11(30):27318-27326. doi: 10.1021/acsami.9b06432. Epub 2019 Jul 22.

PMID:
31284718
8.

Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics.

Mo L, Guo Z, Yang L, Zhang Q, Fang Y, Xin Z, Chen Z, Hu K, Han L, Li L.

Int J Mol Sci. 2019 Apr 29;20(9). pii: E2124. doi: 10.3390/ijms20092124. Review.

9.

Self-catalyzed copper-silver complex inks for low-cost fabrication of highly oxidation-resistant and conductive copper-silver hybrid tracks at a low temperature below 100 °C.

Li W, Li CF, Lang F, Jiu J, Ueshima M, Wang H, Liu ZQ, Suganuma K.

Nanoscale. 2018 Mar 15;10(11):5254-5263. doi: 10.1039/c7nr09225c.

PMID:
29498383
10.

Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size.

Mavuri A, Mayes AG, Alexander MS.

Materials (Basel). 2019 Jul 15;12(14). pii: E2277. doi: 10.3390/ma12142277.

11.

Inkjet Printing of Reactive Silver Ink on Textiles.

Shahariar H, Kim I, Soewardiman H, Jur JS.

ACS Appl Mater Interfaces. 2019 Feb 13;11(6):6208-6216. doi: 10.1021/acsami.8b18231. Epub 2019 Jan 29.

PMID:
30644708
12.

Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.

Kell AJ, Paquet C, Mozenson O, Djavani-Tabrizi I, Deore B, Liu X, Lopinski GP, James R, Hettak K, Shaker J, Momciu A, Ferrigno J, Ferrand O, Hu JX, Lafrenière S, Malenfant PRL.

ACS Appl Mater Interfaces. 2017 May 24;9(20):17226-17237. doi: 10.1021/acsami.7b02573. Epub 2017 May 12.

PMID:
28466636
13.

Microstructural and Process Characterization of Conductive Traces Printed from Ag Particulate Inks.

Roberson DA, Wicker RB, Murr LE, Church K, MacDonald E.

Materials (Basel). 2011 May 26;4(6):963-979. doi: 10.3390/ma4060963.

14.

Reactive Silver Oxalate Ink Composition with Enhanced Curing Conditions for Flexible Substrates.

Zope KR, Cormier D, Williams SA.

ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3830-3837. doi: 10.1021/acsami.7b19161. Epub 2018 Jan 19.

PMID:
29303549
15.

All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications.

Karim N, Afroj S, Tan S, Novoselov KS, Yeates SG.

Sci Rep. 2019 May 29;9(1):8035. doi: 10.1038/s41598-019-44420-y.

16.

Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films.

Pajor-Świerzy A, Socha R, Pawłowski R, Warszyński P, Szczepanowicz K.

Nanotechnology. 2019 May 31;30(22):225301. doi: 10.1088/1361-6528/ab0467. Epub 2019 Feb 5.

PMID:
30721883
17.

Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.

Kanzaki M, Kawaguchi Y, Kawasaki H.

ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20852-20858. doi: 10.1021/acsami.7b04641. Epub 2017 Jun 8.

PMID:
28574247
18.

Conductive inks with a "built-in" mechanism that enables sintering at room temperature.

Grouchko M, Kamyshny A, Mihailescu CF, Anghel DF, Magdassi S.

ACS Nano. 2011 Apr 26;5(4):3354-9. doi: 10.1021/nn2005848. Epub 2011 Apr 5.

PMID:
21438563
19.

Self-Reducing Copper Precursor Inks and Photonic Additive Yield Conductive Patterns under Intense Pulsed Light.

Rosen YS, Yakushenko A, Offenhäusser A, Magdassi S.

ACS Omega. 2017 Feb 16;2(2):573-581. doi: 10.1021/acsomega.6b00478. eCollection 2017 Feb 28.

20.

Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics.

He P, Cao J, Ding H, Liu C, Neilson J, Li Z, Kinloch IA, Derby B.

ACS Appl Mater Interfaces. 2019 Sep 4;11(35):32225-32234. doi: 10.1021/acsami.9b04589. Epub 2019 Aug 21.

PMID:
31390171

Supplemental Content

Support Center