Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 74

1.

Young and Especially Senescent Endothelial Microvesicles Produce NADPH: The Fuel for Their Antioxidant Machinery.

Bodega G, Alique M, Bohórquez L, Morán M, Magro L, Puebla L, Ciordia S, Mena MC, Arza E, Ramírez MR.

Oxid Med Cell Longev. 2018 Apr 5;2018:3183794. doi: 10.1155/2018/3183794. eCollection 2018.

2.

Microvesicles derived from hypoxia/reoxygenation-treated human umbilical vein endothelial cells promote apoptosis and oxidative stress in H9c2 cardiomyocytes.

Zhang Q, Shang M, Zhang M, Wang Y, Chen Y, Wu Y, Liu M, Song J, Liu Y.

BMC Cell Biol. 2016 Jun 23;17(1):25. doi: 10.1186/s12860-016-0100-1.

3.

The Antioxidant Machinery of Young and Senescent Human Umbilical Vein Endothelial Cells and Their Microvesicles.

Bodega G, Alique M, Bohórquez L, Ciordia S, Mena MC, Ramírez MR.

Oxid Med Cell Longev. 2017;2017:7094781. doi: 10.1155/2017/7094781. Epub 2017 May 31.

4.

Microvascular endothelial cells-derived microvesicles imply in ischemic stroke by modulating astrocyte and blood brain barrier function and cerebral blood flow.

Pan Q, He C, Liu H, Liao X, Dai B, Chen Y, Yang Y, Zhao B, Bihl J, Ma X.

Mol Brain. 2016 Jun 7;9(1):63. doi: 10.1186/s13041-016-0243-1.

5.

Lipoxin A4 stimulates endothelial miR-126-5p expression and its transfer via microvesicles.

Codagnone M, Recchiuti A, Lanuti P, Pierdomenico AM, Cianci E, Patruno S, Mari VC, Simiele F, Di Tomo P, Pandolfi A, Romano M.

FASEB J. 2017 May;31(5):1856-1866. doi: 10.1096/fj.201600952R. Epub 2017 Jan 18.

PMID:
28100645
6.

Effects of HIV-1 gp120 and TAT-derived microvesicles on endothelial cell function.

Hijmans JG, Stockelman K, Levy M, Brewster LM, Bammert TD, Greiner JJ, Connick E, DeSouza CA.

J Appl Physiol (1985). 2019 May 1;126(5):1242-1249. doi: 10.1152/japplphysiol.01048.2018. Epub 2019 Feb 21.

PMID:
30789287
7.

Internalization and induction of antioxidant messages by microvesicles contribute to the antiapoptotic effects on human endothelial cells.

Soleti R, Lauret E, Andriantsitohaina R, Carmen Martínez M.

Free Radic Biol Med. 2012 Dec 1;53(11):2159-70. doi: 10.1016/j.freeradbiomed.2012.09.021. Epub 2012 Sep 23.

PMID:
23010499
8.

Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation.

de Freitas-Silva L, Rodríguez-Ruiz M, Houmani H, da Silva LC, Palma JM, Corpas FJ.

J Plant Physiol. 2017 Nov;218:196-205. doi: 10.1016/j.jplph.2017.08.007. Epub 2017 Aug 31.

PMID:
28888161
9.

The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants.

Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocaña A, Del Río LA, Barroso JB.

Plant Cell Environ. 2006 Jul;29(7):1449-59.

10.

Exercise intensity modulates the appearance of circulating microvesicles with proangiogenic potential upon endothelial cells.

Wilhelm EN, González-Alonso J, Parris C, Rakobowchuk M.

Am J Physiol Heart Circ Physiol. 2016 Nov 1;311(5):H1297-H1310. doi: 10.1152/ajpheart.00516.2016. Epub 2016 Sep 16.

11.

Notoginsenoside R1 attenuates high glucose-induced endothelial damage in rat retinal capillary endothelial cells by modulating the intracellular redox state.

Fan C, Qiao Y, Tang M.

Drug Des Devel Ther. 2017 Nov 23;11:3343-3354. doi: 10.2147/DDDT.S149700. eCollection 2017.

12.

Preferential utilization of NADPH as the endogenous electron donor for NAD(P)H:quinone oxidoreductase 1 (NQO1) in intact pulmonary arterial endothelial cells.

Bongard RD, Lindemer BJ, Krenz GS, Merker MP.

Free Radic Biol Med. 2009 Jan 1;46(1):25-32. doi: 10.1016/j.freeradbiomed.2008.09.007. Epub 2008 Sep 20.

13.

Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

Andrews AM, Lutton EM, Merkel SF, Razmpour R, Ramirez SH.

Front Cell Neurosci. 2016 Feb 29;10:43. doi: 10.3389/fncel.2016.00043. eCollection 2016.

14.

Effects of endothelial microvesicles induced by A23187 on H9c2 cardiomyocytes.

Shang M, Zhang Q, Zhang MX, Wang Y, Chen Y, Wu YN, Song JQ, Liu ML, Liu YX.

Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2013 Nov;29(6):559-64.

PMID:
24654540
15.

NAD(P)H, a directly operating antioxidant?

Kirsch M, De Groot H.

FASEB J. 2001 Jul;15(9):1569-74. Review.

PMID:
11427489
16.

Perturbation of human coronary artery endothelial cell redox state and NADPH generation by methylglyoxal.

Morgan PE, Sheahan PJ, Davies MJ.

PLoS One. 2014 Jan 21;9(1):e86564. doi: 10.1371/journal.pone.0086564. eCollection 2014.

17.

The influence of high glucose on the aerobic metabolism of endothelial EA.hy926 cells.

Koziel A, Woyda-Ploszczyca A, Kicinska A, Jarmuszkiewicz W.

Pflugers Arch. 2012 Dec;464(6):657-69. doi: 10.1007/s00424-012-1156-1. Epub 2012 Sep 30.

18.

Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione.

Kilanczyk E, Saraswat Ohri S, Whittemore SR, Hetman M.

ASN Neuro. 2016 Jul 21;8(4). pii: 1759091416660404. doi: 10.1177/1759091416660404. Print 2016 Aug.

19.

Endothelial microvesicles circulating in peripheral and coronary circulation are associated with central blood pressure in coronary artery disease.

Gkaliagkousi E, Gavriilaki E, Vasileiadis I, Nikolaidou B, Yiannaki E, Lazaridis A, Triantafyllou A, Anyfanti P, Markala D, Zarifis I, Douma S.

Am J Hypertens. 2019 Jul 27. pii: hpz116. doi: 10.1093/ajh/hpz116. [Epub ahead of print]

PMID:
31350539
20.

Cholesterol-induced membrane microvesicles as novel carriers of damage-associated molecular patterns: mechanisms of formation, action, and detoxification.

Liu ML, Scalia R, Mehta JL, Williams KJ.

Arterioscler Thromb Vasc Biol. 2012 Sep;32(9):2113-21. doi: 10.1161/ATVBAHA.112.255471. Epub 2012 Jul 19.

Supplemental Content

Support Center