Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Evolution of Antibiotic Resistance in Biofilm and Planktonic Pseudomonas aeruginosa Populations Exposed to Subinhibitory Levels of Ciprofloxacin.

Ahmed MN, Porse A, Sommer MOA, Høiby N, Ciofu O.

Antimicrob Agents Chemother. 2018 Jul 27;62(8). pii: e00320-18. doi: 10.1128/AAC.00320-18. Print 2018 Aug.

2.

Real-Time Monitoring of nfxB Mutant Occurrence and Dynamics in Pseudomonas aeruginosa Biofilm Exposed to Subinhibitory Concentrations of Ciprofloxacin.

Zaborskyte G, Andersen JB, Kragh KN, Ciofu O.

Antimicrob Agents Chemother. 2017 Feb 23;61(3). pii: e02292-16. doi: 10.1128/AAC.02292-16. Print 2017 Mar.

3.

Dynamics of mutator and antibiotic-resistant populations in a pharmacokinetic/pharmacodynamic model of Pseudomonas aeruginosa biofilm treatment.

Macià MD, Pérez JL, Molin S, Oliver A.

Antimicrob Agents Chemother. 2011 Nov;55(11):5230-7. doi: 10.1128/AAC.00617-11. Epub 2011 Aug 22.

4.
5.

Pharmacodynamics of ciprofloxacin against Pseudomonas aeruginosa planktonic and biofilm-derived cells.

Marques CNH, Nelson SM.

Lett Appl Microbiol. 2019 Apr;68(4):350-359. doi: 10.1111/lam.13126. Epub 2019 Mar 7.

PMID:
30740751
6.

Pseudomonas aeruginosa Biofilm Antibiotic Resistance Gene ndvB Expression Requires the RpoS Stationary-Phase Sigma Factor.

Hall CW, Hinz AJ, Gagnon LB, Zhang L, Nadeau JP, Copeland S, Saha B, Mah TF.

Appl Environ Microbiol. 2018 Mar 19;84(7). pii: e02762-17. doi: 10.1128/AEM.02762-17. Print 2018 Apr 1.

7.

The phenotypic evolution of Pseudomonas aeruginosa populations changes in the presence of subinhibitory concentrations of ciprofloxacin.

Wassermann T, Meinike Jørgensen K, Ivanyshyn K, Bjarnsholt T, Khademi SM, Jelsbak L, Høiby N, Ciofu O.

Microbiology. 2016 May;162(5):865-75. doi: 10.1099/mic.0.000273. Epub 2016 Mar 7.

PMID:
26953154
8.

Antipseudomonal agents exhibit differential pharmacodynamic interactions with human polymorphonuclear leukocytes against established biofilms of Pseudomonas aeruginosa.

Chatzimoschou A, Simitsopoulou M, Antachopoulos C, Walsh TJ, Roilides E.

Antimicrob Agents Chemother. 2015 Apr;59(4):2198-205. doi: 10.1128/AAC.04934-14. Epub 2015 Feb 2.

9.

Efficacy of Ciprofloxacin and Its Copper Complex against Pseudomonas aeruginosa Biofilms.

Tewes F, Bahamondez-Canas TF, Smyth HDC.

AAPS PharmSciTech. 2019 May 29;20(5):205. doi: 10.1208/s12249-019-1417-9.

PMID:
31144198
10.

Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella.

Benthall G, Touzel RE, Hind CK, Titball RW, Sutton JM, Thomas RJ, Wand ME.

Int J Antimicrob Agents. 2015 Nov;46(5):538-45. doi: 10.1016/j.ijantimicag.2015.07.014. Epub 2015 Aug 31.

PMID:
26364845
11.

Evolutionary diversification of Pseudomonas aeruginosa in an artificial sputum model.

Davies EV, James CE, Brockhurst MA, Winstanley C.

BMC Microbiol. 2017 Jan 5;17(1):3. doi: 10.1186/s12866-016-0916-z.

12.

Differences in biofilm formation and antimicrobial resistance of Pseudomonas aeruginosa isolated from airways of mechanically ventilated patients and cystic fibrosis patients.

Fricks-Lima J, Hendrickson CM, Allgaier M, Zhuo H, Wiener-Kronish JP, Lynch SV, Yang K.

Int J Antimicrob Agents. 2011 Apr;37(4):309-15. doi: 10.1016/j.ijantimicag.2010.12.017. Epub 2011 Mar 5.

13.

Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms.

Pires D, Sillankorva S, Faustino A, Azeredo J.

Res Microbiol. 2011 Oct;162(8):798-806. doi: 10.1016/j.resmic.2011.06.010. Epub 2011 Jul 5.

PMID:
21782936
14.

Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits.

Roudashti S, Zeighami H, Mirshahabi H, Bahari S, Soltani A, Haghi F.

World J Microbiol Biotechnol. 2017 Mar;33(3):50. doi: 10.1007/s11274-016-2195-0. Epub 2017 Feb 10.

PMID:
28188589
15.

Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study.

Singh R, Ray P, Das A, Sharma M.

J Med Microbiol. 2009 Aug;58(Pt 8):1067-73. doi: 10.1099/jmm.0.009720-0. Epub 2009 Jun 15.

PMID:
19528167
16.
17.

Antibiotic susceptibility of coagulase-negative staphylococci isolated from very low birth weight babies: comprehensive comparisons of bacteria at different stages of biofilm formation.

Qu Y, Daley AJ, Istivan TS, Garland SM, Deighton MA.

Ann Clin Microbiol Antimicrob. 2010 May 27;9:16. doi: 10.1186/1476-0711-9-16.

18.

Phenotypic characterization of multidrug-resistant Pseudomonas aeruginosa strains isolated from pediatric patients associated to biofilm formation.

Ochoa SA, Cruz-Córdova A, Rodea GE, Cázares-Domínguez V, Escalona G, Arellano-Galindo J, Hernández-Castro R, Reyes-López A, Xicohtencatl-Cortes J.

Microbiol Res. 2015 Mar;172:68-78. doi: 10.1016/j.micres.2014.11.005. Epub 2014 Dec 5.

19.

In vitro photodynamic eradication of Pseudomonas aeruginosa in planktonic and biofilm culture.

Street CN, Gibbs A, Pedigo L, Andersen D, Loebel NG.

Photochem Photobiol. 2009 Jan-Feb;85(1):137-43. doi: 10.1111/j.1751-1097.2008.00407.x. Epub 2008 Jul 30.

PMID:
18673325
20.

Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide.

Elkins JG, Hassett DJ, Stewart PS, Schweizer HP, McDermott TR.

Appl Environ Microbiol. 1999 Oct;65(10):4594-600.

Supplemental Content

Support Center