Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Cyclic Peptides for Efficient Detection of Collagen.

Takita KK, Fujii KK, Kadonosono T, Masuda R, Koide T.

Chembiochem. 2018 Aug 6;19(15):1613-1617. doi: 10.1002/cbic.201800166. Epub 2018 Jun 21.

PMID:
29756312
2.
4.
5.

Specific recognition of the collagen triple helix by chaperone HSP47: minimal structural requirement and spatial molecular orientation.

Koide T, Asada S, Takahara Y, Nishikawa Y, Nagata K, Kitagawa K.

J Biol Chem. 2006 Feb 10;281(6):3432-8. Epub 2005 Dec 2.

6.
7.

Specific recognition of the collagen triple helix by chaperone HSP47. II. The HSP47-binding structural motif in collagens and related proteins.

Koide T, Nishikawa Y, Asada S, Yamazaki CM, Takahara Y, Homma DL, Otaka A, Ohtani K, Wakamiya N, Nagata K, Kitagawa K.

J Biol Chem. 2006 Apr 21;281(16):11177-85. Epub 2006 Feb 16.

8.

Nanoparticle Assembly and Gelatin Binding Mediated by Triple Helical Collagen Mimetic Peptide.

San BH, Li Y, Tarbet EB, Yu SM.

ACS Appl Mater Interfaces. 2016 Aug 10;8(31):19907-15. doi: 10.1021/acsami.6b05707. Epub 2016 Jul 27.

9.
10.

Xaa-Arg-Gly triplets in the collagen triple helix are dominant binding sites for the molecular chaperone HSP47.

Koide T, Takahara Y, Asada S, Nagata K.

J Biol Chem. 2002 Feb 22;277(8):6178-82. Epub 2001 Dec 19.

11.

The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and acetyl-(Gly-Pro-3(S)Hyp)10-NH2 do not form a collagen triple helix.

Mizuno K, Hayashi T, Peyton DH, Bachinger HP.

J Biol Chem. 2004 Jan 2;279(1):282-7. Epub 2003 Oct 23.

12.

Supramolecular assembly of collagen triblock peptides.

Martin R, Waldmann L, Kaplan DL.

Biopolymers. 2003 Dec;70(4):435-44.

PMID:
14648755
13.

Enzymatic Phosphorylation of Ser in a Type I Collagen Peptide.

Qiu Y, Poppleton E, Mekkat A, Yu H, Banerjee S, Wiley SE, Dixon JE, Kaplan DL, Lin YS, Brodsky B.

Biophys J. 2018 Dec 18;115(12):2327-2335. doi: 10.1016/j.bpj.2018.11.012. Epub 2018 Nov 16.

PMID:
30527445
14.

High-resolution structures of collagen-like peptides [(Pro-Pro-Gly)4-Xaa-Yaa-Gly-(Pro-Pro-Gly)4]: implications for triple-helix hydration and Hyp(X) puckering.

Okuyama K, Hongo C, Wu G, Mizuno K, Noguchi K, Ebisuzaki S, Tanaka Y, Nishino N, Bächinger HP.

Biopolymers. 2009 May;91(5):361-72. doi: 10.1002/bip.21138.

PMID:
19137577
15.
16.

Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition.

Widmer C, Gebauer JM, Brunstein E, Rosenbaum S, Zaucke F, Drögemüller C, Leeb T, Baumann U.

Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13243-7. doi: 10.1073/pnas.1208072109. Epub 2012 Jul 30.

17.

Targeting collagen strands by photo-triggered triple-helix hybridization.

Li Y, Foss CA, Summerfield DD, Doyle JJ, Torok CM, Dietz HC, Pomper MG, Yu SM.

Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14767-72. doi: 10.1073/pnas.1209721109. Epub 2012 Aug 27.

18.

Hydroxyproline Ring Pucker Causes Frustration of Helix Parameters in the Collagen Triple Helix.

Chow WY, Bihan D, Forman CJ, Slatter DA, Reid DG, Wales DJ, Farndale RW, Duer MJ.

Sci Rep. 2015 Jul 29;5:12556. doi: 10.1038/srep12556.

19.

Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide.

Jiang T, Xu C, Zuo X, Conticello VP.

Angew Chem Int Ed Engl. 2014 Aug 4;53(32):8367-71. doi: 10.1002/anie.201403780. Epub 2014 Jun 24.

PMID:
24961508
20.

A structure-activity relationship study elucidating the mechanism of sequence-specific collagen recognition by the chaperone HSP47.

Nishikawa Y, Takahara Y, Asada S, Shigenaga A, Otaka A, Kitagawa K, Koide T.

Bioorg Med Chem. 2010 Jun 1;18(11):3767-75. doi: 10.1016/j.bmc.2010.04.054. Epub 2010 Apr 21.

PMID:
20471275

Supplemental Content

Support Center