Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Understanding genetic control of root system architecture in soybean: Insights into the genetic basis of lateral root number.

Prince SJ, Valliyodan B, Ye H, Yang M, Tai S, Hu W, Murphy M, Durnell LA, Song L, Joshi T, Liu Y, Van de Velde J, Vandepoele K, Grover Shannon J, Nguyen HT.

Plant Cell Environ. 2019 Jan;42(1):212-229. doi: 10.1111/pce.13333. Epub 2018 Jun 15.

PMID:
29749073
2.

Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes.

Dwivedi SL, Scheben A, Edwards D, Spillane C, Ortiz R.

Front Plant Sci. 2017 Aug 29;8:1461. doi: 10.3389/fpls.2017.01461. eCollection 2017. Review.

3.

Genetic variation and association mapping for 12 agronomic traits in indica rice.

Lu Q, Zhang M, Niu X, Wang S, Xu Q, Feng Y, Wang C, Deng H, Yuan X, Yu H, Wang Y, Wei X.

BMC Genomics. 2015 Dec 16;16:1067. doi: 10.1186/s12864-015-2245-2.

4.

Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping.

Han Y, Zhao X, Cao G, Wang Y, Li Y, Liu D, Teng W, Zhang Z, Li D, Qiu L, Zheng H, Li W.

BMC Genomics. 2015 Aug 13;16:598. doi: 10.1186/s12864-015-1800-1.

5.

Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments.

Hao D, Cheng H, Yin Z, Cui S, Zhang D, Wang H, Yu D.

Theor Appl Genet. 2012 Feb;124(3):447-58. doi: 10.1007/s00122-011-1719-0. Epub 2011 Oct 14.

PMID:
21997761
6.

Evaluation of high yielding soybean germplasm under water limitation.

Prince SJ, Murphy M, Mutava RN, Zhang Z, Nguyen N, Kim YH, Pathan SM, Shannon GJ, Valliyodan B, Nguyen HT.

J Integr Plant Biol. 2016 May;58(5):475-91. doi: 10.1111/jipb.12378. Epub 2015 Sep 25.

PMID:
26172438
7.

Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm.

Zhang J, Song Q, Cregan PB, Nelson RL, Wang X, Wu J, Jiang GL.

BMC Genomics. 2015 Mar 20;16:217. doi: 10.1186/s12864-015-1441-4.

8.

Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure.

Cuesta-Marcos A, Szucs P, Close TJ, Filichkin T, Muehlbauer GJ, Smith KP, Hayes PM.

BMC Genomics. 2010 Dec 15;11:707. doi: 10.1186/1471-2164-11-707.

9.

Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean.

Prince SJ, Song L, Qiu D, Maldonado Dos Santos JV, Chai C, Joshi T, Patil G, Valliyodan B, Vuong TD, Murphy M, Krampis K, Tucker DM, Biyashev R, Dorrance AE, Maroof MA, Xu D, Shannon JG, Nguyen HT.

BMC Genomics. 2015 Feb 25;16:132. doi: 10.1186/s12864-015-1334-6.

10.

Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans.

Valliyodan B, Ye H, Song L, Murphy M, Shannon JG, Nguyen HT.

J Exp Bot. 2017 Apr 1;68(8):1835-1849. doi: 10.1093/jxb/erw433. Review.

PMID:
27927997
11.

Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions.

Chang HX, Brown PJ, Lipka AE, Domier LL, Hartman GL.

BMC Genomics. 2016 Feb 29;17:153. doi: 10.1186/s12864-016-2487-7.

12.

Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits.

Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS.

PLoS One. 2015 May 13;10(5):e0122165. doi: 10.1371/journal.pone.0122165. eCollection 2015.

13.

Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance.

Canè MA, Maccaferri M, Nazemi G, Salvi S, Francia R, Colalongo C, Tuberosa R.

Mol Breed. 2014;34(4):1629-1645. Epub 2014 Nov 27.

14.

Genetic dissection of plant growth habit in chickpea.

Upadhyaya HD, Bajaj D, Srivastava R, Daware A, Basu U, Tripathi S, Bharadwaj C, Tyagi AK, Parida SK.

Funct Integr Genomics. 2017 Nov;17(6):711-723. doi: 10.1007/s10142-017-0566-8. Epub 2017 Jun 9.

PMID:
28600722
15.

High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities.

Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP.

Ann Bot. 2013 Jul;112(2):381-9. doi: 10.1093/aob/mcs245. Epub 2012 Nov 21.

16.

Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.).

Sanchez DL, Liu S, Ibrahim R, Blanco M, Lübberstedt T.

Plant Sci. 2018 Mar;268:30-38. doi: 10.1016/j.plantsci.2017.12.004. Epub 2017 Dec 16.

PMID:
29362081
17.

Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study.

Li X, Guo Z, Lv Y, Cen X, Ding X, Wu H, Li X, Huang J, Xiong L.

PLoS Genet. 2017 Jul 7;13(7):e1006889. doi: 10.1371/journal.pgen.1006889. eCollection 2017 Jul.

18.

Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): Comparative analysis of global accessions and Senegalese landraces.

Hu Z, Mbacké B, Perumal R, Guèye MC, Sy O, Bouchet S, Prasad PV, Morris GP.

BMC Genomics. 2015 Dec 9;16:1048. doi: 10.1186/s12864-015-2255-0.

19.

Genome-wide association and epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean.

Zhang J, Singh A, Mueller DS, Singh AK.

Plant J. 2015 Dec;84(6):1124-36. doi: 10.1111/tpj.13069.

20.

Genomic consequences of selection and genome-wide association mapping in soybean.

Wen Z, Boyse JF, Song Q, Cregan PB, Wang D.

BMC Genomics. 2015 Sep 3;16:671. doi: 10.1186/s12864-015-1872-y.

Supplemental Content

Support Center