Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Reducing resistance allele formation in CRISPR gene drive.

Champer J, Liu J, Oh SY, Reeves R, Luthra A, Oakes N, Clark AG, Messer PW.

Proc Natl Acad Sci U S A. 2018 May 22;115(21):5522-5527. doi: 10.1073/pnas.1720354115. Epub 2018 May 7.

PMID:
29735716
2.

Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations.

Champer J, Reeves R, Oh SY, Liu C, Liu J, Clark AG, Messer PW.

PLoS Genet. 2017 Jul 20;13(7):e1006796. doi: 10.1371/journal.pgen.1006796. eCollection 2017 Jul.

3.

Behavior of homing endonuclease gene drives targeting genes required for viability or female fertility with multiplexed guide RNAs.

Oberhofer G, Ivy T, Hay BA.

Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):E9343-E9352. doi: 10.1073/pnas.1805278115. Epub 2018 Sep 17.

4.

Systematic Evaluation of Drosophila CRISPR Tools Reveals Safe and Robust Alternatives to Autonomous Gene Drives in Basic Research.

Port F, Muschalik N, Bullock SL.

G3 (Bethesda). 2015 May 20;5(7):1493-502. doi: 10.1534/g3.115.019083.

5.

Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila.

Port F, Chen HM, Lee T, Bullock SL.

Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2967-76. doi: 10.1073/pnas.1405500111. Epub 2014 Jul 7.

6.

Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila.

Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O'Connor-Giles KM.

Genetics. 2014 Apr;196(4):961-71. doi: 10.1534/genetics.113.160713. Epub 2014 Jan 29.

7.

Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9.

Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, Liu LP, Yang Z, Mao D, Sun L, Wu Q, Ji JY, Xi J, Mohr SE, Xu J, Perrimon N, Ni JQ.

Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19012-7. doi: 10.1073/pnas.1318481110. Epub 2013 Nov 4.

8.

Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management.

KaramiNejadRanjbar M, Eckermann KN, Ahmed HMM, Sánchez C HM, Dippel S, Marshall JM, Wimmer EA.

Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6189-6194. doi: 10.1073/pnas.1713825115. Epub 2018 May 29.

9.

Highly improved gene targeting by germline-specific Cas9 expression in Drosophila.

Kondo S, Ueda R.

Genetics. 2013 Nov;195(3):715-21. doi: 10.1534/genetics.113.156737. Epub 2013 Sep 3.

10.

Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.

Johansen AK, Molenaar B, Versteeg D, Leitoguinho AR, Demkes C, Spanjaard B, de Ruiter H, Akbari Moqadam F, Kooijman L, Zentilin L, Giacca M, van Rooij E.

Circ Res. 2017 Oct 27;121(10):1168-1181. doi: 10.1161/CIRCRESAHA.116.310370. Epub 2017 Aug 29.

PMID:
28851809
11.

Evolution of Resistance Against CRISPR/Cas9 Gene Drive.

Unckless RL, Clark AG, Messer PW.

Genetics. 2017 Feb;205(2):827-841. doi: 10.1534/genetics.116.197285. Epub 2016 Dec 10.

12.

Concerning RNA-guided gene drives for the alteration of wild populations.

Esvelt KM, Smidler AL, Catteruccia F, Church GM.

Elife. 2014 Jul 17;3. pii: e03401. doi: 10.7554/eLife.03401. Review.

13.

Establishment of the CRISPR/Cas9 System for Targeted Gene Disruption and Gene Tagging.

Ehrke-Schulz E, Schiwon M, Hagedorn C, Ehrhardt A.

Methods Mol Biol. 2017;1654:165-176. doi: 10.1007/978-1-4939-7231-9_11.

PMID:
28986789
14.

CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus.

Gorter de Vries AR, de Groot PA, van den Broek M, Daran JG.

Microb Cell Fact. 2017 Dec 5;16(1):222. doi: 10.1186/s12934-017-0835-1.

15.

Combining the auxin-inducible degradation system with CRISPR/Cas9-based genome editing for the conditional depletion of endogenous Drosophila melanogaster proteins.

Bence M, Jankovics F, Lukácsovich T, Erdélyi M.

FEBS J. 2017 Apr;284(7):1056-1069. doi: 10.1111/febs.14042. Epub 2017 Mar 8.

16.

An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize.

Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B.

Plant Biotechnol J. 2017 Feb;15(2):257-268. doi: 10.1111/pbi.12611. Epub 2016 Sep 5.

17.

Creating Heritable Mutations in Drosophila with CRISPR-Cas9.

Port F, Bullock SL.

Methods Mol Biol. 2016;1478:145-160. Review.

PMID:
27730579
18.

Hot News: Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.

Soriano V.

AIDS Rev. 2017 Oct-Dec;19(3):167-172.

PMID:
29019352
19.

Tools and strategies for scarless allele replacement in Drosophila using CRISPR/Cas9.

Lamb AM, Walker EA, Wittkopp PJ.

Fly (Austin). 2017 Jan 2;11(1):53-64. doi: 10.1080/19336934.2016.1220463. Epub 2016 Aug 5.

20.

Modeling the Manipulation of Natural Populations by the Mutagenic Chain Reaction.

Unckless RL, Messer PW, Connallon T, Clark AG.

Genetics. 2015 Oct;201(2):425-31. doi: 10.1534/genetics.115.177592. Epub 2015 Jul 30.

Supplemental Content

Support Center