Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

An Escherichia coli Nitrogen Starvation Response Is Important for Mutualistic Coexistence with Rhodopseudomonas palustris.

McCully AL, Behringer MG, Gliessman JR, Pilipenko EV, Mazny JL, Lynch M, Drummond DA, McKinlay JB.

Appl Environ Microbiol. 2018 Jul 2;84(14). pii: e00404-18. doi: 10.1128/AEM.00404-18. Print 2018 Jul 15.

2.

Recipient-Biased Competition for an Intracellularly Generated Cross-Fed Nutrient Is Required for Coexistence of Microbial Mutualists.

McCully AL, LaSarre B, McKinlay JB.

MBio. 2017 Nov 28;8(6). pii: e01620-17. doi: 10.1128/mBio.01620-17.

3.

Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism.

McCully AL, LaSarre B, McKinlay JB.

Environ Microbiol. 2017 Sep;19(9):3538-3550. doi: 10.1111/1462-2920.13847. Epub 2017 Jul 24.

PMID:
28654212
4.

Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients.

LaSarre B, McCully AL, Lennon JT, McKinlay JB.

ISME J. 2017 Feb;11(2):337-348. doi: 10.1038/ismej.2016.141. Epub 2016 Nov 29.

5.

Fermentative Escherichia coli makes a substantial contribution to H2 production in coculture with phototrophic Rhodopseudomonas palustris.

Sangani AA, McCully AL, LaSarre B, McKinlay JB.

FEMS Microbiol Lett. 2019 Jul 1;366(14). pii: fnz162. doi: 10.1093/femsle/fnz162.

PMID:
31329226
6.

Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator NtrC in vivo.

Schumacher J, Behrends V, Pan Z, Brown DR, Heydenreich F, Lewis MR, Bennett MH, Razzaghi B, Komorowski M, Barahona M, Stumpf MP, Wigneshweraraj S, Bundy JG, Buck M.

MBio. 2013 Nov 19;4(6):e00881-13. doi: 10.1128/mBio.00881-13.

7.

Characterization of pII family (GlnK1, GlnK2, and GlnB) protein uridylylation in response to nitrogen availability for Rhodopseudomonas palustris.

Connelly HM, Pelletier DA, Lu TY, Lankford PK, Hettich RL.

Anal Biochem. 2006 Oct 1;357(1):93-104. Epub 2006 Jun 21.

PMID:
16860774
8.

Nitrogen Starvation Induces Persister Cell Formation in Escherichia coli.

Brown DR.

J Bacteriol. 2019 Jan 11;201(3). pii: e00622-18. doi: 10.1128/JB.00622-18. Print 2019 Feb 1.

9.

A novel regulatory factor affecting the transcription of methionine biosynthesis genes in Escherichia coli experiencing sustained nitrogen starvation.

Switzer A, Evangelopoulos D, Figueira R, de Carvalho LPS, Brown DR, Wigneshweraraj S.

Microbiology. 2018 Nov;164(11):1457-1470. doi: 10.1099/mic.0.000683. Epub 2018 Jun 29.

10.

Transcriptomic Responses of the Interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a Cellulose-Grown Coculture for Enhanced Hydrogen Production.

Lu H, Chen J, Jia Y, Cai M, Lee PKH.

Appl Environ Microbiol. 2016 Jul 15;82(15):4546-4559. doi: 10.1128/AEM.00789-16. Print 2016 Aug 1.

11.
12.

The Nitrogen Regulatory PII Protein (GlnB) and N-Acetylglucosamine 6-Phosphate Epimerase (NanE) Allosterically Activate Glucosamine 6-Phosphate Deaminase (NagB) in Escherichia coli.

Rodionova IA, Goodacre N, Babu M, Emili A, Uetz P, Saier MH Jr.

J Bacteriol. 2018 Feb 7;200(5). pii: e00691-17. doi: 10.1128/JB.00691-17. Print 2018 Mar 1.

13.

Essential Genome of the Metabolically Versatile Alphaproteobacterium Rhodopseudomonas palustris.

Pechter KB, Gallagher L, Pyles H, Manoil CS, Harwood CS.

J Bacteriol. 2015 Dec 28;198(5):867-76. doi: 10.1128/JB.00771-15.

14.

Dynamics of the Escherichia coli proteome in response to nitrogen starvation and entry into the stationary phase.

Sanchuki HB, Gravina F, Rodrigues TE, Gerhardt EC, Pedrosa FO, Souza EM, Raittz RT, Valdameri G, de Souza GA, Huergo LF.

Biochim Biophys Acta Proteins Proteom. 2017 Mar;1865(3):344-352. doi: 10.1016/j.bbapap.2016.12.002. Epub 2016 Dec 8.

PMID:
27939605
15.

GlnK Facilitates the Dynamic Regulation of Bacterial Nitrogen Assimilation.

Gosztolai A, Schumacher J, Behrends V, Bundy JG, Heydenreich F, Bennett MH, Buck M, Barahona M.

Biophys J. 2017 May 23;112(10):2219-2230. doi: 10.1016/j.bpj.2017.04.012.

16.
17.

New insights into the adaptive transcriptional response to nitrogen starvation in Escherichia coli.

Switzer A, Brown DR, Wigneshweraraj S.

Biochem Soc Trans. 2018 Dec 17;46(6):1721-1728. doi: 10.1042/BST20180502. Epub 2018 Dec 4. Review.

19.

Nitrogen fixation in Rhodopseudomonas palustris co-cultured with Bacillus subtilis in the presence of air.

Arashida H, Kugenuma T, Watanabe M, Maeda I.

J Biosci Bioeng. 2019 May;127(5):589-593. doi: 10.1016/j.jbiosc.2018.10.010. Epub 2018 Nov 2.

PMID:
30392964
20.

Supplemental Content

Support Center