Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 172

1.

Development of Novel Octanoyl Chitosan Nanoparticles for Improved Rifampicin Pulmonary Delivery: Optimization by Factorial Design.

Petkar KC, Chavhan S, Kunda N, Saleem I, Somavarapu S, Taylor KMG, Sawant KK.

AAPS PharmSciTech. 2018 May;19(4):1758-1772. doi: 10.1208/s12249-018-0972-9. Epub 2018 Mar 27.

PMID:
29589222
2.

Promising Chitosan-Coated Alginate-Tween 80 Nanoparticles as Rifampicin Coadministered Ascorbic Acid Delivery Carrier Against Mycobacterium tuberculosis.

Scolari IR, Páez PL, Sánchez-Borzone ME, Granero GE.

AAPS PharmSciTech. 2019 Jan 9;20(2):67. doi: 10.1208/s12249-018-1278-7.

PMID:
30627867
3.

Development and Evaluation of Chitosan Microparticles Based Dry Powder Inhalation Formulations of Rifampicin and Rifabutin.

Pai RV, Jain RR, Bannalikar AS, Menon MD.

J Aerosol Med Pulm Drug Deliv. 2016 Apr;29(2):179-95. doi: 10.1089/jamp.2014.1187. Epub 2015 Sep 25.

PMID:
26406162
4.

Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis.

Rawal T, Parmar R, Tyagi RK, Butani S.

Colloids Surf B Biointerfaces. 2017 Jun 1;154:321-330. doi: 10.1016/j.colsurfb.2017.03.044. Epub 2017 Mar 21.

PMID:
28363192
5.

Inhalable polymer-glycerosomes as safe and effective carriers for rifampicin delivery to the lungs.

Melis V, Manca ML, Bullita E, Tamburini E, Castangia I, Cardia MC, Valenti D, Fadda AM, Peris JE, Manconi M.

Colloids Surf B Biointerfaces. 2016 Jul 1;143:301-308. doi: 10.1016/j.colsurfb.2016.03.044. Epub 2016 Mar 16.

PMID:
27022870
6.

Development and in vitro characterization of chitosan-coated polymeric nanoparticles for oral delivery and sustained release of the immunosuppressant drug mycophenolate mofetil.

Mohammed M, Mansell H, Shoker A, Wasan KM, Wasan EK.

Drug Dev Ind Pharm. 2019 Jan;45(1):76-87. doi: 10.1080/03639045.2018.1518455. Epub 2018 Sep 25.

PMID:
30169982
7.

Evaluation of highly branched cyclic dextrin in inhalable particles of combined antibiotics for the pulmonary delivery of anti-tuberculosis drugs.

Kadota K, Senda A, Tagishi H, Ayorinde JO, Tozuka Y.

Int J Pharm. 2017 Jan 30;517(1-2):8-18. doi: 10.1016/j.ijpharm.2016.11.060. Epub 2016 Nov 29.

PMID:
27913241
8.

Effects of Chemical Conjugation of l-Leucine to Chitosan on Dispersibility and Controlled Release of Drug from a Nanoparticulate Dry Powder Inhaler Formulation.

Muhsin MD, George G, Beagley K, Ferro V, Wang H, Islam N.

Mol Pharm. 2016 May 2;13(5):1455-66. doi: 10.1021/acs.molpharmaceut.5b00859. Epub 2016 Apr 18.

PMID:
26998555
9.

Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis.

Vieira ACC, Chaves LL, Pinheiro S, Pinto S, Pinheiro M, Lima SC, Ferreira D, Sarmento B, Reis S.

Int J Pharm. 2018 Jan 30;536(1):478-485. doi: 10.1016/j.ijpharm.2017.11.071. Epub 2017 Dec 2.

PMID:
29203137
10.

Gelatin nanocarriers as potential vectors for effective management of tuberculosis.

Saraogi GK, Gupta P, Gupta UD, Jain NK, Agrawal GP.

Int J Pharm. 2010 Jan 29;385(1-2):143-9. doi: 10.1016/j.ijpharm.2009.10.004. Epub 2009 Oct 9.

PMID:
19819315
11.

Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery.

Ni R, Zhao J, Liu Q, Liang Z, Muenster U, Mao S.

Eur J Pharm Sci. 2017 Mar 1;99:137-146. doi: 10.1016/j.ejps.2016.12.013. Epub 2016 Dec 15.

PMID:
27988327
12.

Formation and characterization of chitosan-polylacticacid-polyethylene glycol-gelatin nanoparticles: a novel biosystem for controlled drug delivery.

Rajan M, Raj V.

Carbohydr Polym. 2013 Oct 15;98(1):951-8. doi: 10.1016/j.carbpol.2013.05.025. Epub 2013 May 21.

PMID:
23987433
13.

Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis.

Garg T, Rath G, Goyal AK.

Artif Cells Nanomed Biotechnol. 2016 May;44(3):997-1001. doi: 10.3109/21691401.2015.1008508. Epub 2015 Feb 14.

PMID:
25682840
14.

Synthesis and toxicological evaluation of a chitosan-L-leucine conjugate for pulmonary drug delivery applications.

Muhsin MD, George G, Beagley K, Ferro V, Armitage C, Islam N.

Biomacromolecules. 2014 Oct 13;15(10):3596-607. doi: 10.1021/bm5008635. Epub 2014 Sep 22.

PMID:
25191851
15.

Poly(ethylene carbonate)-containing polylactic acid microparticles with rifampicin improve drug delivery to macrophages.

Priemel PA, Wang Y, Bohr A, Water JJ, Yang M, Mørck Nielsen H.

J Pharm Pharmacol. 2018 Aug;70(8):1009-1021. doi: 10.1111/jphp.12937. Epub 2018 May 30.

PMID:
29851078
16.

Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline.

Rawal T, Patel S, Butani S.

Eur J Pharm Sci. 2018 Nov 1;124:273-287. doi: 10.1016/j.ejps.2018.08.038. Epub 2018 Aug 31.

PMID:
30176365
17.

In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid.

Booysen LL, Kalombo L, Brooks E, Hansen R, Gilliland J, Gruppo V, Lungenhofer P, Semete-Makokotlela B, Swai HS, Kotze AF, Lenaerts A, du Plessis LH.

Int J Pharm. 2013 Feb 28;444(1-2):10-7. doi: 10.1016/j.ijpharm.2013.01.038. Epub 2013 Jan 26.

PMID:
23357255
18.

[Preparation, characterization, and pulmonary delivery of rifapentine liposomes modified by lauric diethanolamide].

Shu JY, Quan XY, Shu Y, Guang YP, Liu YC.

Yao Xue Xue Bao. 2006 Aug;41(8):761-4. Chinese.

PMID:
17039784
19.

HPMA-PLGA Based Nanoparticles for Effective In Vitro Delivery of Rifampicin.

Rani S, Gothwal A, Pandey PK, Chauhan DS, Pachouri PK, Gupta UD, Gupta U.

Pharm Res. 2018 Dec 3;36(1):19. doi: 10.1007/s11095-018-2543-x.

PMID:
30511238
20.

Nano-formulation of rifampicin with enhanced bioavailability: development, characterization and in-vivo safety.

Singh H, Jindal S, Singh M, Sharma G, Kaur IP.

Int J Pharm. 2015 May 15;485(1-2):138-51. doi: 10.1016/j.ijpharm.2015.02.050. Epub 2015 Mar 10.

PMID:
25769294

Supplemental Content

Support Center