Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

N-acetyl-cysteine increases the replication of Chlamydia pneumoniae and prolongs the clearance of the pathogen from mice.

Kókai D, Mosolygó T, Virók DP, Endrész V, Burián K.

J Med Microbiol. 2018 Mar 9. doi: 10.1099/jmm.0.000716. [Epub ahead of print]

PMID:
29521616
2.

Anti-infective control in human bronchiolar epithelial cells by mucin phenotypic changes following uptake of N-acetyl-L-cysteine.

Koizumi C, Yamada M, Ishizaki K, Ueda T, Sakurai K.

Free Radic Res. 2015;49(12):1449-58. doi: 10.3109/10715762.2015.1087642. Epub 2015 Sep 18.

PMID:
26313520
3.

N-acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions.

Amaral EP, Conceição EL, Costa DL, Rocha MS, Marinho JM, Cordeiro-Santos M, D'Império-Lima MR, Barbosa T, Sher A, Andrade BB.

BMC Microbiol. 2016 Oct 28;16(1):251.

4.

N-acetyl-L-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus.

Geiler J, Michaelis M, Naczk P, Leutz A, Langer K, Doerr HW, Cinatl J Jr.

Biochem Pharmacol. 2010 Feb 1;79(3):413-20. doi: 10.1016/j.bcp.2009.08.025. Epub 2009 Sep 2.

PMID:
19732754
5.

The sst1 resistance locus regulates evasion of type I interferon signaling by Chlamydia pneumoniae as a disease tolerance mechanism.

He X, Berland R, Mekasha S, Christensen TG, Alroy J, Kramnik I, Ingalls RR.

PLoS Pathog. 2013;9(8):e1003569. doi: 10.1371/journal.ppat.1003569. Epub 2013 Aug 29.

6.

Chlamydia pneumoniae expresses genes required for DNA replication but not cytokinesis during persistent infection of HEp-2 cells.

Byrne GI, Ouellette SP, Wang Z, Rao JP, Lu L, Beatty WL, Hudson AP.

Infect Immun. 2001 Sep;69(9):5423-9.

7.

Antimicrobial activity of thiamphenicol-glycinate-acetylcysteinate and other drugs against Chlamydia pneumoniae.

Lombardi A, Drago L, De Vecchi E, Mombelli B, Gismondo MR.

Arzneimittelforschung. 2001;51(3):264-7.

PMID:
11304944
8.

Preceding human metapneumovirus infection increases adherence of Streptococcus pneumoniae and severity of murine pneumococcal pneumonia.

Lai SH, Liao SL, Wong KS, Lin TY.

J Microbiol Immunol Infect. 2016 Apr;49(2):216-24. doi: 10.1016/j.jmii.2014.04.008. Epub 2014 Jun 13.

9.

Chlamydia pneumoniae enhances Interleukin 8 (IL-8) production with reduced azithromycin sensitivity under hypoxia.

Matsuo J, Sakai K, Okubo T, Yamaguchi H.

APMIS. 2019 Mar;127(3):131-138. doi: 10.1111/apm.12924.

PMID:
30746791
10.

Chlamydia species as a cause of community-acquired pneumonia in Canada.

Marrie TJ, Peeling RW, Reid T, De Carolis E; Canadian Community-Acquired Pneumonia Investigators.

Eur Respir J. 2003 May;21(5):779-84.

11.

Intranasal vaccination with Chlamydia pneumoniae induces cross-species immunity against genital Chlamydia muridarum challenge in mice.

Manam S, Chaganty BK, Evani SJ, Zafiratos MT, Ramasubramanian AK, Arulanandam BP, Murthy AK.

PLoS One. 2013 May 31;8(5):e64917. doi: 10.1371/journal.pone.0064917. Print 2013.

12.

Preclinical models for Chlamydia pneumoniae and cardiovascular disease: hypercholesterolemic mice.

Campbell LA, Moazed TC, Kuo CC, Grayston JT.

Clin Microbiol Infect. 1998 Jan;4 Suppl 4:S23-S32.

13.

Age alterations in extent and severity of experimental intranasal infection with Chlamydophila pneumoniae in BALB/c mice.

Little CS, Bowe A, Lin R, Litsky J, Fogel RM, Balin BJ, Fresa-Dillon KL.

Infect Immun. 2005 Mar;73(3):1723-34.

14.

Effect of age and vaccination on extent and spread of Chlamydia pneumoniae infection in C57BL/6 mice.

Eddens T, Beaudoin S, Steinberger A, Little CS, Shell D, Wizel B, Balin B, Fresa-Dillon KL.

Immun Ageing. 2012 May 17;9(1):11. doi: 10.1186/1742-4933-9-11.

15.

Effect of acute Chlamydia pneumoniae infection on lipoprotein metabolism in NIH/S mice.

Tiirola T, Erkkilä L, Laitinen K, Leinonen M, Saikku P, Bloigu A, Jauhiainen M.

Scand J Clin Lab Invest. 2002;62(6):477-84.

PMID:
12469903
16.

Chlamydia pneumoniae infects and multiplies in lymphocytes in vitro.

Haranaga S, Yamaguchi H, Friedman H, Izumi S, Yamamoto Y.

Infect Immun. 2001 Dec;69(12):7753-9.

17.

Restriction of Chlamydia pneumoniae replication in human dendritic cell by activation of indoleamine 2,3-dioxygenase.

Njau F, Geffers R, Thalmann J, Haller H, Wagner AD.

Microbes Infect. 2009 Nov;11(13):1002-10. doi: 10.1016/j.micinf.2009.07.006. Epub 2009 Jul 28.

PMID:
19643200
18.

High-yield culture and purification of Chlamydiaceae bacteria.

Li D, Vaglenov A, Kim T, Wang C, Gao D, Kaltenboeck B.

J Microbiol Methods. 2005 Apr;61(1):17-24.

PMID:
15676192
19.

MyD88 is pivotal for the early inflammatory response and subsequent bacterial clearance and survival in a mouse model of Chlamydia pneumoniae pneumonia.

Naiki Y, Michelsen KS, Schröder NW, Alsabeh R, Slepenkin A, Zhang W, Chen S, Wei B, Bulut Y, Wong MH, Peterson EM, Arditi M.

J Biol Chem. 2005 Aug 12;280(32):29242-9. Epub 2005 Jun 17.

20.

Community-acquired Chlamydia pneumoniae pneumonia in Japan: a prospective multicenter community-acquired pneumonia study.

Miyashita N, Saito A, Kohno S, Oizumi K, Yamaguchi K, Watanabe A, Oda H, Fukano H, Yoshida K, Niki Y, Matsushima T.

Intern Med. 2002 Nov;41(11):943-9.

Supplemental Content

Support Center