Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Criegee intermediates and their impacts on the troposphere.

Khan MAH, Percival CJ, Caravan RL, Taatjes CA, Shallcross DE.

Environ Sci Process Impacts. 2018 Mar 1;20(3):437-453. doi: 10.1039/c7em00585g. Epub 2018 Feb 26.

PMID:
29480909
2.

Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.

Percival CJ, Welz O, Eskola AJ, Savee JD, Osborn DL, Topping DO, Lowe D, Utembe SR, Bacak A, McFiggans G, Cooke MC, Xiao P, Archibald AT, Jenkin ME, Derwent RG, Riipinen I, Mok DW, Lee EP, Dyke JM, Taatjes CA, Shallcross DE.

Faraday Discuss. 2013;165:45-73.

PMID:
24600996
3.

Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.

Drozd GT, Donahue NM.

J Phys Chem A. 2011 May 5;115(17):4381-7. doi: 10.1021/jp2001089. Epub 2011 Apr 8.

PMID:
21476564
4.

Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.

Lester MI, Klippenstein SJ.

Acc Chem Res. 2018 Apr 17;51(4):978-985. doi: 10.1021/acs.accounts.8b00077. Epub 2018 Apr 3.

PMID:
29613756
5.

Criegee intermediates in the indoor environment: new insights.

Shallcross DE, Taatjes CA, Percival CJ.

Indoor Air. 2014 Oct;24(5):495-502. doi: 10.1111/ina.12102. Epub 2014 Mar 25.

PMID:
24512513
6.

2,3-Dimethyl-2-butene (TME) ozonolysis: pressure dependence of stabilized Criegee intermediates and evidence of stabilized vinyl hydroperoxides.

Drozd GT, Kroll J, Donahue NM.

J Phys Chem A. 2011 Jan 20;115(2):161-6. doi: 10.1021/jp108773d. Epub 2010 Dec 16.

PMID:
21162563
7.

Impact of the water dimer on the atmospheric reactivity of carbonyl oxides.

Anglada JM, Solé A.

Phys Chem Chem Phys. 2016 Jun 29;18(26):17698-712. doi: 10.1039/c6cp02531e.

8.

Infrared detection of Criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide.

Ahrens J, Carlsson PT, Hertl N, Olzmann M, Pfeifle M, Wolf JL, Zeuch T.

Angew Chem Int Ed Engl. 2014 Jan 13;53(3):715-9. doi: 10.1002/anie.201307327.

PMID:
24402798
9.

Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.

Huang HL, Chao W, Lin JJ.

Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10857-62. doi: 10.1073/pnas.1513149112. Epub 2015 Aug 17.

10.

The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene.

Kristensen K, Jensen LN, Glasius M, Bilde M.

Environ Sci Process Impacts. 2017 Oct 18;19(10):1220-1234. doi: 10.1039/c7em00231a.

PMID:
28805852
11.

Online Quantification of Criegee Intermediates of α-Pinene Ozonolysis by Stabilization with Spin Traps and Proton-Transfer Reaction Mass Spectrometry Detection.

Giorio C, Campbell SJ, Bruschi M, Tampieri F, Barbon A, Toffoletti A, Tapparo A, Paijens C, Wedlake AJ, Grice P, Howe DJ, Kalberer M.

J Am Chem Soc. 2017 Mar 22;139(11):3999-4008. doi: 10.1021/jacs.6b10981. Epub 2017 Mar 7.

PMID:
28201872
12.

Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air.

Zhao Y, Wingen LM, Perraud V, Greaves J, Finlayson-Pitts BJ.

Phys Chem Chem Phys. 2015 May 21;17(19):12500-14. doi: 10.1039/c5cp01171j.

13.

UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO.

Beames JM, Liu F, Lu L, Lester MI.

J Chem Phys. 2013 Jun 28;138(24):244307. doi: 10.1063/1.4810865.

PMID:
23822244
14.

Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.

Nguyen TB, Tyndall GS, Crounse JD, Teng AP, Bates KH, Schwantes RH, Coggon MM, Zhang L, Feiner P, Milller DO, Skog KM, Rivera-Rios JC, Dorris M, Olson KF, Koss A, Wild RJ, Brown SS, Goldstein AH, de Gouw JA, Brune WH, Keutsch FN, Seinfeld JH, Wennberg PO.

Phys Chem Chem Phys. 2016 Apr 21;18(15):10241-54. doi: 10.1039/c6cp00053c. Epub 2016 Mar 29.

PMID:
27021601
15.

Studies on reactions of ozone with alkenes.

Protczak A, Trzeszczynski J.

Environ Sci Pollut Res Int. 2002;9(6):377-80.

PMID:
12515344
16.

Mechanism and kinetics study on the ozonolysis reaction of 2,3,7,8-TCDD in the atmosphere.

Bai J, Sun X, Zhang C, Gong C, Hu J, Zhang J.

J Environ Sci (China). 2014 Jan 1;26(1):181-8.

PMID:
24649705
17.

Heteroatom Tuning of Bimolecular Criegee Reactions and Its Implications.

Kumar M, Francisco JS.

Angew Chem Int Ed Engl. 2016 Oct 17;55(43):13432-13435. doi: 10.1002/anie.201604848. Epub 2016 Sep 28.

18.

Unimolecular decay strongly limits the atmospheric impact of Criegee intermediates.

Vereecken L, Novelli A, Taraborrelli D.

Phys Chem Chem Phys. 2017 Dec 6;19(47):31599-31612. doi: 10.1039/c7cp05541b.

PMID:
29182168
19.

The gas-phase ozonolysis of α-humulene.

Beck M, Winterhalter R, Herrmann F, Moortgat GK.

Phys Chem Chem Phys. 2011 Jun 21;13(23):10970-1001. doi: 10.1039/c0cp02379e. Epub 2011 Apr 1.

PMID:
21461420
20.

Laboratory studies on secondary organic aerosol formation from terpenes.

Iinuma Y, Böge O, Miao Y, Sierau B, Gnauk T, Herrmann H.

Faraday Discuss. 2005;130:279-94; discussion 363-86, 519-24.

PMID:
16161789

Supplemental Content

Support Center