Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

The application of rumen simulation technique (RUSITEC) for studying dynamics of the bacterial community and metabolome in rumen fluid and the effects of a challenge with Clostridium perfringens.

Wetzels SU, Eger M, Burmester M, Kreienbrock L, Abdulmawjood A, Pinior B, Wagner M, Breves G, Mann E.

PLoS One. 2018 Feb 7;13(2):e0192256. doi: 10.1371/journal.pone.0192256. eCollection 2018.

2.

Assessment of the effects of cinnamon leaf oil on rumen microbial fermentation using two continuous culture systems.

Fraser GR, Chaves AV, Wang Y, McAllister TA, Beauchemin KA, Benchaar C.

J Dairy Sci. 2007 May;90(5):2315-28.

3.
4.

Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA).

Mateos I, Ranilla MJ, Saro C, Carro MD.

Animal. 2017 Nov;11(11):1939-1948. doi: 10.1017/S1751731117000878. Epub 2017 May 2.

PMID:
28462771
5.

The Type of Forage Substrate Preparation Included as Substrate in a RUSITEC System Affects the Ruminal Microbiota and Fermentation Characteristics.

Duarte AC, Holman DB, Alexander TW, Durmic Z, Vercoe PE, Chaves AV.

Front Microbiol. 2017 Apr 20;8:704. doi: 10.3389/fmicb.2017.00704. eCollection 2017.

6.

Investigation of ruminant xenobiotic metabolism in a modified rumen simulation system (RUSITEC).

Birk B, Stähle A, Meier M, Palm M, Funk-Weyer D, Breves G, Seulberger H.

ALTEX. 2018;35(3):379-389. doi: 10.14573/altex.1712221. Epub 2018 Mar 12.

7.

Comparison of microbial fermentation of high- and low-forage diets in Rusitec, single-flow continuous-culture fermenters and sheep rumen.

Carro MD, Ranilla MJ, Martín-García AI, Molina-Alcaide E.

Animal. 2009 Apr;3(4):527-34. doi: 10.1017/S1751731108003844.

PMID:
22444376
8.

Effects of hop varieties on ruminal fermentation and bacterial community in an artificial rumen (rusitec).

Narvaez N, Wang Y, Xu Z, Alexander T, Garden S, McAllister T.

J Sci Food Agric. 2013 Jan 15;93(1):45-52. doi: 10.1002/jsfa.5725. Epub 2012 Jun 12.

PMID:
22692875
9.
10.

Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile.

Vargas JE, Andrés S, Snelling TJ, López-Ferreras L, Yáñez-Ruíz DR, García-Estrada C, López S.

Front Microbiol. 2017 Jun 20;8:1124. doi: 10.3389/fmicb.2017.01124. eCollection 2017.

11.

Bacterial community dynamics in a rumen fluid bioreactor during in-vitro cultivation.

Zapletalová M, Kašparovská J, Křížová L, Kašparovský T, Šerý O, Lochman J.

J Biotechnol. 2016 Sep 20;234:43-49. doi: 10.1016/j.jbiotec.2016.07.013. Epub 2016 Jul 18.

PMID:
27444706
12.

Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro.

Mickdam E, Khiaosa-Ard R, Metzler-Zebeli BU, Klevenhusen F, Chizzola R, Zebeli Q.

Anaerobe. 2016 Jun;39:4-13. doi: 10.1016/j.anaerobe.2016.02.002. Epub 2016 Feb 8.

PMID:
26868619
13.

Application of MootralTM Reduces Methane Production by Altering the Archaea Community in the Rumen Simulation Technique.

Eger M, Graz M, Riede S, Breves G.

Front Microbiol. 2018 Sep 4;9:2094. doi: 10.3389/fmicb.2018.02094. eCollection 2018.

14.
15.

Effects of Disodium Fumarate on In Vitro Rumen Fermentation, The Production of Lipopolysaccharide and Biogenic Amines, and The Rumen Bacterial Community.

Jin W, Xue C, Liu J, Yin Y, Zhu W, Mao S.

Curr Microbiol. 2017 Nov;74(11):1337-1342. doi: 10.1007/s00284-017-1322-y. Epub 2017 Jul 31.

PMID:
28761980
16.

Characterization and comparison of the temporal dynamics of ruminal bacterial microbiota colonizing rice straw and alfalfa hay within ruminants.

Liu J, Zhang M, Xue C, Zhu W, Mao S.

J Dairy Sci. 2016 Dec;99(12):9668-9681. doi: 10.3168/jds.2016-11398. Epub 2016 Sep 28.

17.

In vitro effects of sodium bicarbonate buffer on rumen fermentation, levels of lipopolysaccharide and biogenic amine, and composition of rumen microbiota.

Mao S, Huo W, Liu J, Zhang R, Zhu W.

J Sci Food Agric. 2017 Mar;97(4):1276-1285. doi: 10.1002/jsfa.7861. Epub 2016 Jul 26.

PMID:
27339112
18.

Effects of dilution rate and retention time of concentrate on efficiency of microbial growth, methane production, and ruminal fermentation in Rusitec fermenters.

Martínez ME, Ranilla MJ, Ramos S, Tejido ML, Carro MD.

J Dairy Sci. 2009 Aug;92(8):3930-8. doi: 10.3168/jds.2008-1975.

19.

Saponin-Induced Shifts in the Rumen Microbiome and Metabolome of Young Cattle.

Wang B, Ma MP, Diao QY, Tu Y.

Front Microbiol. 2019 Feb 28;10:356. doi: 10.3389/fmicb.2019.00356. eCollection 2019.

20.

Impact of oxalic acid on rumen function and bacterial community in sheep.

Belenguer A, Ben Bati M, Hervás G, Toral PG, Yáñez-Ruiz DR, Frutos P.

Animal. 2013 Jun;7(6):940-7. doi: 10.1017/S1751731112002455. Epub 2013 Jan 8.

PMID:
23298534

Supplemental Content

Support Center