Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102


Functional loss of p53 cooperates with the in vivo microenvironment to promote malignant progression of gastric cancers.

Ohtsuka J, Oshima H, Ezawa I, Abe R, Oshima M, Ohki R.

Sci Rep. 2018 Feb 2;8(1):2291. doi: 10.1038/s41598-018-20572-1.


Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway.

Oshima H, Matsunaga A, Fujimura T, Tsukamoto T, Taketo MM, Oshima M.

Gastroenterology. 2006 Oct;131(4):1086-95.


The role of PGE2-associated inflammatory responses in gastric cancer development.

Oshima H, Oshima M.

Semin Immunopathol. 2013 Mar;35(2):139-50. doi: 10.1007/s00281-012-0353-5. Epub 2012 Oct 11.


Mouse gastric tumor models with prostaglandin E2 pathway activation show similar gene expression profiles to intestinal-type human gastric cancer.

Itadani H, Oshima H, Oshima M, Kotani H.

BMC Genomics. 2009 Dec 17;10:615. doi: 10.1186/1471-2164-10-615.


Induction and down-regulation of Sox17 and its possible roles during the course of gastrointestinal tumorigenesis.

Du YC, Oshima H, Oguma K, Kitamura T, Itadani H, Fujimura T, Piao YS, Yoshimoto T, Minamoto T, Kotani H, Taketo MM, Oshima M.

Gastroenterology. 2009 Oct;137(4):1346-57. doi: 10.1053/j.gastro.2009.06.041. Epub 2009 Jun 21.


Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition.

Jiang Y, Xie X, Li Z, Wang Z, Zhang Y, Ling ZQ, Pan Y, Wang Z, Chen Y.

Cancer Res. 2011 Apr 15;71(8):2959-68. doi: 10.1158/0008-5472.CAN-10-4077. Epub 2011 Mar 8. Erratum in: Cancer Res. 2011 Apr 15;71(8). doi:10.1158/0008-5472.CAN-11-1303. Ling, Zhiqiang [corrected to Ling, Zhi-Qiang]. Cancer Res. 2011 Jun 1;71(11):4051.


Myeloid Differentiation Factor 88 Signaling in Bone Marrow-Derived Cells Promotes Gastric Tumorigenesis by Generation of Inflammatory Microenvironment.

Maeda Y, Echizen K, Oshima H, Yu L, Sakulsak N, Hirose O, Yamada Y, Taniguchi T, Jenkins BJ, Saya H, Oshima M.

Cancer Prev Res (Phila). 2016 Mar;9(3):253-63. doi: 10.1158/1940-6207.CAPR-15-0315. Epub 2016 Feb 17.


Synergistic tumour suppressor activity of E-cadherin and p53 in a conditional mouse model for metastatic diffuse-type gastric cancer.

Shimada S, Mimata A, Sekine M, Mogushi K, Akiyama Y, Fukamachi H, Jonkers J, Tanaka H, Eishi Y, Yuasa Y.

Gut. 2012 Mar;61(3):344-53. doi: 10.1136/gutjnl-2011-300050. Epub 2011 Aug 24.


Establishment and characterization of metastatic gastric cancer cell lines from murine gastric adenocarcinoma lacking Smad4, p53, and E-cadherin.

Park JW, Park DM, Choi BK, Kwon BS, Seong JK, Green JE, Kim DY, Kim HK.

Mol Carcinog. 2015 Nov;54(11):1521-7. doi: 10.1002/mc.22226. Epub 2014 Oct 12.


Runx3 protects gastric epithelial cells against epithelial-mesenchymal transition-induced cellular plasticity and tumorigenicity.

Voon DC, Wang H, Koo JK, Nguyen TA, Hor YT, Chu YS, Ito K, Fukamachi H, Chan SL, Thiery JP, Ito Y.

Stem Cells. 2012 Oct;30(10):2088-99. doi: 10.1002/stem.1183.


UBR2 Enriched in p53 Deficient Mouse Bone Marrow Mesenchymal Stem Cell-Exosome Promoted Gastric Cancer Progression via Wnt/β-Catenin Pathway.

Mao J, Liang Z, Zhang B, Yang H, Li X, Fu H, Zhang X, Yan Y, Xu W, Qian H.

Stem Cells. 2017 Nov;35(11):2267-2279. doi: 10.1002/stem.2702.


Epithelial cell-derived periostin functions as a tumor suppressor in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14ARF/Mdm2 signaling pathway.

Lv H, Liu R, Fu J, Yang Q, Shi J, Chen P, Ji M, Shi B, Hou P.

Cell Cycle. 2014;13(18):2962-74. doi: 10.4161/15384101.2014.947203.


NANOGP8 is the key regulator of stemness, EMT, Wnt pathway, chemoresistance, and other malignant phenotypes in gastric cancer cells.

Ma X, Wang B, Wang X, Luo Y, Fan W.

PLoS One. 2018 Apr 24;13(4):e0192436. doi: 10.1371/journal.pone.0192436. eCollection 2018.


p53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells.

Pinho AV, Rooman I, Real FX.

Cell Cycle. 2011 Apr 15;10(8):1312-21. Epub 2011 Apr 15.


Inhibition of glucosylceramide synthase eliminates the oncogenic function of p53 R273H mutant in the epithelial-mesenchymal transition and induced pluripotency of colon cancer cells.

Hosain SB, Khiste SK, Uddin MB, Vorubindi V, Ingram C, Zhang S, Hill RA, Gu X, Liu YY.

Oncotarget. 2016 Sep 13;7(37):60575-60592. doi: 10.18632/oncotarget.11169.


Roles of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 expression and beta-catenin activation in gastric carcinogenesis in N-methyl-N-nitrosourea-treated K19-C2mE transgenic mice.

Takasu S, Tsukamoto T, Cao XY, Toyoda T, Hirata A, Ban H, Yamamoto M, Sakai H, Yanai T, Masegi T, Oshima M, Tatematsu M.

Cancer Sci. 2008 Dec;99(12):2356-64. doi: 10.1111/j.1349-7006.2008.00983.x. Epub 2008 Nov 17.


Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation.

Nakayama M, Sakai E, Echizen K, Yamada Y, Oshima H, Han TS, Ohki R, Fujii S, Ochiai A, Robine S, Voon DC, Tanaka T, Taketo MM, Oshima M.

Oncogene. 2017 Oct 19;36(42):5885-5896. doi: 10.1038/onc.2017.194. Epub 2017 Jun 19.


Activation of mesenchymal stem cells by macrophages prompts human gastric cancer growth through NF-κB pathway.

Yang T, Zhang X, Wang M, Zhang J, Huang F, Cai J, Zhang Q, Mao F, Zhu W, Qian H, Xu W.

PLoS One. 2014 May 13;9(5):e97569. doi: 10.1371/journal.pone.0097569. eCollection 2014.


Role of epithelial-mesenchymal transition in gastric cancer initiation and progression.

Peng Z, Wang CX, Fang EH, Wang GB, Tong Q.

World J Gastroenterol. 2014 May 14;20(18):5403-10. doi: 10.3748/wjg.v20.i18.5403. Review.


Mutant p53 promotes epithelial-mesenchymal plasticity and enhances metastasis in mammary carcinomas of WAP-T mice.

Lenfert E, Maenz C, Heinlein C, Jannasch K, Schumacher U, Pantel K, Tolstonog GV, Deppert W, Wegwitz F.

Int J Cancer. 2015 Mar 15;136(6):E521-33. doi: 10.1002/ijc.29186. Epub 2014 Sep 19.

Supplemental Content

Support Center