Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Small Molecules Targeting Mycobacterium tuberculosis Type II NADH Dehydrogenase Exhibit Antimycobacterial Activity.

Harbut MB, Yang B, Liu R, Yano T, Vilch├Ęze C, Cheng B, Lockner J, Guo H, Yu C, Franzblau SG, Petrassi HM, Jacobs WR Jr, Rubin H, Chatterjee AK, Wang F.

Angew Chem Int Ed Engl. 2018 Mar 19;57(13):3478-3482. doi: 10.1002/anie.201800260. Epub 2018 Feb 22.

2.

Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery.

Sellamuthu S, Singh M, Kumar A, Singh SK.

Expert Opin Ther Targets. 2017 Jun;21(6):559-570. doi: 10.1080/14728222.2017.1327577. Epub 2017 May 15. Review.

PMID:
28472892
3.

Plasticity of Mycobacterium tuberculosis NADH dehydrogenases and their role in virulence.

Vilch├Ęze C, Weinrick B, Leung LW, Jacobs WR Jr.

Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1599-1604. doi: 10.1073/pnas.1721545115. Epub 2018 Jan 30.

4.

2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and Mycobacterium tuberculosis: Structure-Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization.

Murugesan D, Ray PC, Bayliss T, Prosser GA, Harrison JR, Green K, Soares de Melo C, Feng TS, Street LJ, Chibale K, Warner DF, Mizrahi V, Epemolu O, Scullion P, Ellis L, Riley J, Shishikura Y, Ferguson L, Osuna-Cabello M, Read KD, Green SR, Lamprecht DA, Finin PM, Steyn AJC, Ioerger TR, Sacchettini J, Rhee KY, Arora K, Barry CE 3rd, Wyatt PG, Boshoff HIM.

ACS Infect Dis. 2018 Jun 8;4(6):954-969. doi: 10.1021/acsinfecdis.7b00275. Epub 2018 Mar 26.

5.

[Development of antituberculous drugs: current status and future prospects].

Tomioka H, Namba K.

Kekkaku. 2006 Dec;81(12):753-74. Review. Japanese.

PMID:
17240921
6.

Roles of the two type II NADH dehydrogenases in the survival of Mycobacterium tuberculosis in vitro.

Awasthy D, Ambady A, Narayana A, Morayya S, Sharma U.

Gene. 2014 Oct 15;550(1):110-6. doi: 10.1016/j.gene.2014.08.024. Epub 2014 Aug 13.

PMID:
25128581
8.

Mycobacterium tuberculosis type II NADH-menaquinone oxidoreductase catalyzes electron transfer through a two-site ping-pong mechanism and has two quinone-binding sites.

Yano T, Rahimian M, Aneja KK, Schechter NM, Rubin H, Scott CP.

Biochemistry. 2014 Feb 25;53(7):1179-90. doi: 10.1021/bi4013897. Epub 2014 Feb 11.

9.

Quinolinyl Pyrimidines: Potent Inhibitors of NDH-2 as a Novel Class of Anti-TB Agents.

Shirude PS, Paul B, Roy Choudhury N, Kedari C, Bandodkar B, Ugarkar BG.

ACS Med Chem Lett. 2012 Aug 13;3(9):736-40. doi: 10.1021/ml300134b. eCollection 2012 Sep 13.

10.

Type 2 NADH Dehydrogenase Is the Only Point of Entry for Electrons into the Streptococcus agalactiae Respiratory Chain and Is a Potential Drug Target.

Lencina AM, Franza T, Sullivan MJ, Ulett GC, Ipe DS, Gaudu P, Gennis RB, Schurig-Briccio LA.

MBio. 2018 Jul 3;9(4). pii: e01034-18. doi: 10.1128/mBio.01034-18.

11.

Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery.

Iqbal IK, Bajeli S, Akela AK, Kumar A.

Pathogens. 2018 Feb 23;7(1). pii: E24. doi: 10.3390/pathogens7010024. Review.

12.

Antitubercular pharmacodynamics of phenothiazines.

Warman AJ, Rito TS, Fisher NE, Moss DM, Berry NG, O'Neill PM, Ward SA, Biagini GA.

J Antimicrob Chemother. 2013 Apr;68(4):869-80. doi: 10.1093/jac/dks483. Epub 2012 Dec 9.

13.

2-Phenylindole and Arylsulphonamide: Novel Scaffolds Bactericidal against Mycobacterium tuberculosis.

Naik M, Ghorpade S, Jena LK, Gorai G, Narayan A, Guptha S, Sharma S, Dinesh N, Kaur P, Nandishaiah R, Bhat J, Balakrishnan G, Humnabadkar V, Ramachandran V, Naviri LK, Khadtare P, Panda M, Iyer PS, Chatterji M.

ACS Med Chem Lett. 2014 Jul 11;5(9):1005-9. doi: 10.1021/ml5001933. eCollection 2014 Sep 11.

14.

[Prospects for development of new antituberculous drugs].

Tomioka H.

Kekkaku. 2002 Aug;77(8):573-84. Japanese.

PMID:
12235850
15.

Activation of type II NADH dehydrogenase by quinolinequinones mediates antitubercular cell death.

Heikal A, Hards K, Cheung CY, Menorca A, Timmer MS, Stocker BL, Cook GM.

J Antimicrob Chemother. 2016 Oct;71(10):2840-7. doi: 10.1093/jac/dkw244. Epub 2016 Jun 30.

PMID:
27365187
16.

Rational Design, Synthesis, and Biological Evaluation of Heterocyclic Quinolones Targeting the Respiratory Chain of Mycobacterium tuberculosis.

Hong WD, Gibbons PD, Leung SC, Amewu R, Stocks PA, Stachulski A, Horta P, Cristiano MLS, Shone AE, Moss D, Ardrey A, Sharma R, Warman AJ, Bedingfield PTP, Fisher NE, Aljayyoussi G, Mead S, Caws M, Berry NG, Ward SA, Biagini GA, O'Neill PM, Nixon GL.

J Med Chem. 2017 May 11;60(9):3703-3726. doi: 10.1021/acs.jmedchem.6b01718. Epub 2017 Apr 25.

17.

Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines.

Schurig-Briccio LA, Yano T, Rubin H, Gennis RB.

Biochim Biophys Acta. 2014 Jul;1837(7):954-63. doi: 10.1016/j.bbabio.2014.03.017. Epub 2014 Apr 5.

18.
19.

Identification of new inhibitors for alternative NADH dehydrogenase (NDH-II).

Mogi T, Matsushita K, Murase Y, Kawahara K, Miyoshi H, Ui H, Shiomi K, Omura S, Kita K.

FEMS Microbiol Lett. 2009 Feb;291(2):157-61. doi: 10.1111/j.1574-6968.2008.01451.x. Epub 2008 Dec 5.

20.

Supplemental Content

Support Center