Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

A senescence-delaying pre-culture medium for transcriptomics of Podospora anserina.

Benocci T, de Vries RP, Daly P.

J Microbiol Methods. 2018 Mar;146:33-36. doi: 10.1016/j.mimet.2018.01.010. Epub 2018 Feb 3.

2.

Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms.

Plohnke N, Hamann A, Poetsch A, Osiewacz HD, Rögner M, Rexroth S.

Exp Gerontol. 2014 Aug;56:13-25. doi: 10.1016/j.exger.2014.02.008. Epub 2014 Feb 18.

PMID:
24556281
3.

The PaPsr1 and PaWhi2 genes are members of the regulatory network that connect stationary phase to mycelium differentiation and reproduction in Podospora anserina.

Timpano H, Chan Ho Tong L, Gautier V, Lalucque H, Silar P.

Fungal Genet Biol. 2016 Sep;94:1-10. doi: 10.1016/j.fgb.2016.06.006. Epub 2016 Jun 25.

PMID:
27353975
4.

[Mitochondrial respiratory mutant Podospora anserina obtained by short-term deep culturing of aging mycelium].

Kudriavtseva OA, Kamzolkina OV, Mazheĭka IS, Sellem C.

Mikrobiologiia. 2012 Nov-Dec;81(6):707-19. Russian. No abstract available.

PMID:
23610920
5.

Plant biomass degrading ability of the coprophilic ascomycete fungus Podospora anserina.

Couturier M, Tangthirasunun N, Ning X, Brun S, Gautier V, Bennati-Granier C, Silar P, Berrin JG.

Biotechnol Adv. 2016 Sep-Oct;34(5):976-983. doi: 10.1016/j.biotechadv.2016.05.010. Epub 2016 Jun 1. Review.

PMID:
27263000
6.

Cultivation of Podospora anserina on soybean hulls results in an efficient enzyme cocktail for plant biomass hydrolysis.

Mäkelä MR, Bouzid O, Robl D, Post H, Peng M, Heck A, Altelaar M, de Vries RP.

N Biotechnol. 2017 Jul 25;37(Pt B):162-171. doi: 10.1016/j.nbt.2017.02.002. Epub 2017 Feb 7.

PMID:
28188936
7.

Assessing organismal aging in the filamentous fungus Podospora anserina.

Osiewacz HD, Hamann A, Zintel S.

Methods Mol Biol. 2013;965:439-62. doi: 10.1007/978-1-62703-239-1_29.

PMID:
23296676
8.

Grafting as a method for studying development in the filamentous fungus Podospora anserina.

Silar P.

Fungal Biol. 2011 Aug;115(8):793-802. doi: 10.1016/j.funbio.2011.06.005. Epub 2011 Jun 21.

PMID:
21802060
9.

Enzymatic Adaptation of Podospora anserina to Different Plant Biomass Provides Leads to Optimized Commercial Enzyme Cocktails.

Benocci T, Daly P, Aguilar-Pontes MV, Lail K, Wang M, Lipzen A, Ng V, Grigoriev IV, de Vries RP.

Biotechnol J. 2019 Apr;14(4):e1800185. doi: 10.1002/biot.201800185. Epub 2018 Oct 8.

PMID:
30221832
10.

Two nuclear life cycle-regulated genes encode interchangeable subunits c of mitochondrial ATP synthase in Podospora anserina.

Déquard-Chablat M, Sellem CH, Golik P, Bidard F, Martos A, Bietenhader M, di Rago JP, Sainsard-Chanet A, Hermann-Le Denmat S, Contamine V.

Mol Biol Evol. 2011 Jul;28(7):2063-75. doi: 10.1093/molbev/msr025. Epub 2011 Jan 27.

PMID:
21273631
11.

Inositol-phosphate signaling as mediator for growth and sexual reproduction in Podospora anserina.

Xie N, Ruprich-Robert G, Chapeland-Leclerc F, Coppin E, Lalucque H, Brun S, Debuchy R, Silar P.

Dev Biol. 2017 Sep 1;429(1):285-305. doi: 10.1016/j.ydbio.2017.06.017. Epub 2017 Jun 16.

12.

A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina.

Philipp O, Hamann A, Servos J, Werner A, Koch I, Osiewacz HD.

PLoS One. 2013 Dec 20;8(12):e83109. doi: 10.1371/journal.pone.0083109. eCollection 2013. Erratum in: PLoS One. 2013;8(12). doi:10.1371/annotation/03280dea-66ce-4ba6-8ac5-f985f51dea37. PLoS One. 2014;9(3):e91590.

13.

IDC2 and IDC3, two genes involved in cell non-autonomous signaling of fruiting body development in the model fungus Podospora anserina.

Lalucque H, Malagnac F, Green K, Gautier V, Grognet P, Chan Ho Tong L, Scott B, Silar P.

Dev Biol. 2017 Jan 15;421(2):126-138. doi: 10.1016/j.ydbio.2016.12.016. Epub 2016 Dec 12.

14.

A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development.

Servos J, Hamann A, Grimm C, Osiewacz HD.

PLoS One. 2012;7(11):e49292. doi: 10.1371/journal.pone.0049292. Epub 2012 Nov 12.

15.

Structure and Biophysical Characterization of the S-Adenosylmethionine-dependent O-Methyltransferase PaMTH1, a Putative Enzyme Accumulating during Senescence of Podospora anserina.

Chatterjee D, Kudlinzki D, Linhard V, Saxena K, Schieborr U, Gande SL, Wurm JP, Wöhnert J, Abele R, Rogov VV, Dötsch V, Osiewacz HD, Sreeramulu S, Schwalbe H.

J Biol Chem. 2015 Jun 26;290(26):16415-30. doi: 10.1074/jbc.M115.660829. Epub 2015 May 15.

16.

Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation.

Brun S, Malagnac F, Bidard F, Lalucque H, Silar P.

Mol Microbiol. 2009 Oct;74(2):480-96. doi: 10.1111/j.1365-2958.2009.06878.x. Epub 2009 Sep 22.

17.

Modulation of the glyoxalase system in the aging model Podospora anserina: effects on growth and lifespan.

Scheckhuber CQ, Mack SJ, Strobel I, Ricciardi F, Gispert S, Osiewacz HD.

Aging (Albany NY). 2010 Dec;2(12):969-80.

18.

Over-expression of an S-adenosylmethionine-dependent methyltransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions.

Kunstmann B, Osiewacz HD.

Aging Cell. 2008 Oct;7(5):651-62. doi: 10.1111/j.1474-9726.2008.00412.x. Epub 2008 Jul 24.

19.

Podospora anserina does not senesce when serially passaged in liquid culture.

Turker MS, Cummings DJ.

J Bacteriol. 1987 Feb;169(2):454-60.

20.

Life span extension by dietary restriction is reduced but not abolished by loss of both SIR2 and HST2 in Podospora anserina.

Boivin A, Gaumer S, Sainsard-Chanet A.

Mech Ageing Dev. 2008 Dec;129(12):714-21. doi: 10.1016/j.mad.2008.09.011. Epub 2008 Sep 27.

PMID:
18930755

Supplemental Content

Support Center