Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Dbf4 recruitment by forkhead transcription factors defines an upstream rate-limiting step in determining origin firing timing.

Fang D, Lengronne A, Shi D, Forey R, Skrzypczak M, Ginalski K, Yan C, Wang X, Cao Q, Pasero P, Lou H.

Genes Dev. 2017 Dec 1;31(23-24):2405-2415. doi: 10.1101/gad.306571.117. Epub 2018 Jan 12.

2.

Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae.

Knott SR, Peace JM, Ostrow AZ, Gan Y, Rex AE, Viggiani CJ, Tavaré S, Aparicio OM.

Cell. 2012 Jan 20;148(1-2):99-111. doi: 10.1016/j.cell.2011.12.012.

3.

Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression.

Sheu YJ, Kinney JB, Stillman B.

Genome Res. 2016 Mar;26(3):315-30. doi: 10.1101/gr.195248.115. Epub 2016 Jan 5.

4.

Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase.

Peace JM, Villwock SK, Zeytounian JL, Gan Y, Aparicio OM.

Genome Res. 2016 Mar;26(3):365-75. doi: 10.1101/gr.196857.115. Epub 2016 Jan 4.

5.

Damage-induced phosphorylation of Sld3 is important to block late origin firing.

Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP.

Nature. 2010 Sep 23;467(7314):479-83. doi: 10.1038/nature09377.

6.

Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae.

Ostrow AZ, Kalhor R, Gan Y, Villwock SK, Linke C, Barberis M, Chen L, Aparicio OM.

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2411-E2419. doi: 10.1073/pnas.1612422114. Epub 2017 Mar 6.

7.

Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing.

Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H.

Curr Biol. 2011 Dec 20;21(24):2055-63. doi: 10.1016/j.cub.2011.11.038. Epub 2011 Dec 8.

8.

Behavior of replication origins in Eukaryota - spatio-temporal dynamics of licensing and firing.

Musiałek MW, Rybaczek D.

Cell Cycle. 2015;14(14):2251-64. doi: 10.1080/15384101.2015.1056421. Epub 2015 Jun 1. Review.

9.

Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation.

Zegerman P, Diffley JF.

Nature. 2010 Sep 23;467(7314):474-8. doi: 10.1038/nature09373. Epub 2010 Sep 12.

10.

Recruitment of Fkh1 to replication origins requires precisely positioned Fkh1/2 binding sites and concurrent assembly of the pre-replicative complex.

Reinapae A, Jalakas K, Avvakumov N, Lõoke M, Kristjuhan K, Kristjuhan A.

PLoS Genet. 2017 Jan 31;13(1):e1006588. doi: 10.1371/journal.pgen.1006588. eCollection 2017 Jan.

11.

Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics.

Ostrow AZ, Nellimoottil T, Knott SR, Fox CA, Tavaré S, Aparicio OM.

PLoS One. 2014 Feb 4;9(2):e87647. doi: 10.1371/journal.pone.0087647. eCollection 2014.

13.

Identification of Fkh1 and Fkh2 binding site variants associated with dynamically bound DNA elements including replication origins.

Ostrow AZ, Aparicio OM.

Nucleus. 2017 Nov 2;8(6):600-604. doi: 10.1080/19491034.2017.1380139. Epub 2017 Nov 13.

14.

Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin.

Casey L, Patterson EE, Müller U, Fox CA.

Mol Biol Cell. 2008 Feb;19(2):608-22. Epub 2007 Nov 28.

15.

Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast.

Mantiero D, Mackenzie A, Donaldson A, Zegerman P.

EMBO J. 2011 Nov 11;30(23):4805-14. doi: 10.1038/emboj.2011.404.

16.

Regulated eukaryotic DNA replication origin firing with purified proteins.

Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF.

Nature. 2015 Mar 26;519(7544):431-5. doi: 10.1038/nature14285. Epub 2015 Mar 4.

17.

Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation.

Deegan TD, Yeeles JT, Diffley JF.

EMBO J. 2016 May 2;35(9):961-73. doi: 10.15252/embj.201593552. Epub 2016 Feb 24.

18.

A Dbf4 mutant contributes to bypassing the Rad53-mediated block of origins of replication in response to genotoxic stress.

Duch A, Palou G, Jonsson ZO, Palou R, Calvo E, Wohlschlegel J, Quintana DG.

J Biol Chem. 2011 Jan 28;286(4):2486-91. doi: 10.1074/jbc.M110.190843. Epub 2010 Nov 23.

19.

DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae.

Chen YC, Kenworthy J, Gabrielse C, Hänni C, Zegerman P, Weinreich M.

Genetics. 2013 Jun;194(2):389-401. doi: 10.1534/genetics.113.149740. Epub 2013 Apr 5.

20.

Dbf4 and Cdc7 proteins promote DNA replication through interactions with distinct Mcm2-7 protein subunits.

Ramer MD, Suman ES, Richter H, Stanger K, Spranger M, Bieberstein N, Duncker BP.

J Biol Chem. 2013 May 24;288(21):14926-35. doi: 10.1074/jbc.M112.392910. Epub 2013 Apr 2.

Supplemental Content

Support Center