Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

The effect of tar spot pathogen on host plant carbon balance and its possible consequences on a tundra ecosystem.

Masumoto S, Uchida M, Tojo M, Herrero ML, Mori AS, Imura S.

Oecologia. 2018 Mar;186(3):843-853. doi: 10.1007/s00442-017-4037-7. Epub 2017 Dec 22.

PMID:
29273834
2.

Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic.

Treat CC, Marushchak ME, Voigt C, Zhang Y, Tan Z, Zhuang Q, Virtanen TA, Räsänen A, Biasi C, Hugelius G, Kaverin D, Miller PA, Stendel M, Romanovsky V, Rivkin F, Martikainen PJ, Shurpali NJ.

Glob Chang Biol. 2018 Nov;24(11):5188-5204. doi: 10.1111/gcb.14421. Epub 2018 Sep 9.

PMID:
30101501
3.

Predicting ecosystem carbon balance in a warming Arctic: the importance of long-term thermal acclimation potential and inhibitory effects of light on respiration.

McLaughlin BC, Xu CY, Rastetter EB, Griffin KL.

Glob Chang Biol. 2014 Jun;20(6):1901-12. doi: 10.1111/gcb.12549. Epub 2014 Apr 15.

PMID:
24677488
4.

Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.

Sweet SK, Griffin KL, Steltzer H, Gough L, Boelman NT.

Glob Chang Biol. 2015 Jun;21(6):2394-409. doi: 10.1111/gcb.12852. Epub 2015 Mar 6.

PMID:
25556338
5.

Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization.

Mack MC, Schuur EA, Bret-Harte MS, Shaver GR, Chapin FS.

Nature. 2004 Sep 23;431(7007):440-3.

PMID:
15386009
6.

Habitat type determines herbivory controls over CO2 fluxes in a warmer Arctic.

Sjögersten S, van der Wal R, Woodin SJ.

Ecology. 2008 Aug;89(8):2103-16.

PMID:
18724721
7.

Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

Hicks Pries CE, van Logtestijn RS, Schuur EA, Natali SM, Cornelissen JH, Aerts R, Dorrepaal E.

Glob Chang Biol. 2015 Dec;21(12):4508-19. doi: 10.1111/gcb.13032. Epub 2015 Sep 22.

PMID:
26150277
8.

Leaf- and cell-level carbon cycling responses to a nitrogen and phosphorus gradient in two Arctic tundra species.

Heskel MA, Anderson OR, Atkin OK, Turnbull MH, Griffin KL.

Am J Bot. 2012 Oct;99(10):1702-14. doi: 10.3732/ajb.1200251. Epub 2012 Sep 14.

9.

Carbon loss from an unprecedented Arctic tundra wildfire.

Mack MC, Bret-Harte MS, Hollingsworth TN, Jandt RR, Schuur EA, Shaver GR, Verbyla DL.

Nature. 2011 Jul 27;475(7357):489-92. doi: 10.1038/nature10283.

PMID:
21796209
10.

Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.

Blok D, Faucherre S, Banyasz I, Rinnan R, Michelsen A, Elberling B.

Glob Chang Biol. 2018 Jun;24(6):2660-2672. doi: 10.1111/gcb.14017. Epub 2018 Jan 7.

PMID:
29235209
11.

[CO2-exchange in tundra ecosystems of Vaygach Island during the unusually warm and dry vegetation season].

Zamolodchikov DG.

Zh Obshch Biol. 2015 Mar-Apr;76(2):83-98. Russian.

PMID:
25985484
12.

Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw.

Mauritz M, Bracho R, Celis G, Hutchings J, Natali SM, Pegoraro E, Salmon VG, Schädel C, Webb EE, Schuur EAG.

Glob Chang Biol. 2017 Sep;23(9):3646-3666. doi: 10.1111/gcb.13661. Epub 2017 Mar 29.

PMID:
28208232
13.

Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA).

Ueyama M, Iwata H, Harazono Y, Euskirchen ES, Oechel WC, Zona D.

Ecol Appl. 2013 Dec;23(8):1798-816.

PMID:
24555310
14.

Long-term warming restructures Arctic tundra without changing net soil carbon storage.

Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP.

Nature. 2013 May 30;497(7451):615-8. doi: 10.1038/nature12129. Epub 2013 May 15.

PMID:
23676669
15.

Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.

Parker TC, Subke JA, Wookey PA.

Glob Chang Biol. 2015 May;21(5):2070-81. doi: 10.1111/gcb.12793. Epub 2015 Feb 18.

16.

Genomics in a changing arctic: critical questions await the molecular ecologist.

Wullschleger SD, Breen AL, Iversen CM, Olson MS, Näsholm T, Ganeteg U, Wallenstein MD, Weston DJ.

Mol Ecol. 2015 May;24(10):2301-9. doi: 10.1111/mec.13166. Epub 2015 Apr 20. Review.

PMID:
25809088
17.

Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

Yu Q, Epstein H, Engstrom R, Walker D.

Glob Chang Biol. 2017 Sep;23(9):3895-3907. doi: 10.1111/gcb.13632. Epub 2017 Mar 8.

PMID:
28276177
18.

The unseen iceberg: plant roots in arctic tundra.

Iversen CM, Sloan VL, Sullivan PF, Euskirchen ES, McGuire AD, Norby RJ, Walker AP, Warren JM, Wullschleger SD.

New Phytol. 2015 Jan;205(1):34-58. doi: 10.1111/nph.13003. Epub 2014 Sep 10. Review.

19.

Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.

Ernakovich JG, Hopping KA, Berdanier AB, Simpson RT, Kachergis EJ, Steltzer H, Wallenstein MD.

Glob Chang Biol. 2014 Oct;20(10):3256-69. doi: 10.1111/gcb.12568. Epub 2014 Jun 2. Review.

PMID:
24599697
20.

Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools.

Christiansen CT, Lafreniére MJ, Henry GHR, Grogan P.

Glob Chang Biol. 2018 Aug;24(8):3508-3525. doi: 10.1111/gcb.14084. Epub 2018 Mar 2.

PMID:
29411950

Supplemental Content

Support Center