Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Three-Dimensional Microstructured Azobenzene-Containing Gelatin as a Photoactuable Cell Confining System.

Pennacchio FA, Fedele C, De Martino S, Cavalli S, Vecchione R, Netti PA.

ACS Appl Mater Interfaces. 2018 Jan 10;10(1):91-97. doi: 10.1021/acsami.7b13176. Epub 2017 Dec 28.

PMID:
29260543
2.

Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels.

Tonda-Turo C, Gnavi S, Ruini F, Gambarotta G, Gioffredi E, Chiono V, Perroteau I, Ciardelli G.

J Tissue Eng Regen Med. 2017 Jan;11(1):197-208. doi: 10.1002/term.1902. Epub 2014 Apr 16.

3.

Azobenzene-based polymers: emerging applications as cell culture platforms.

Fedele C, Netti PA, Cavalli S.

Biomater Sci. 2018 May 1;6(5):990-995. doi: 10.1039/c8bm00019k. Review.

PMID:
29528057
4.

Numerical Simulation of Mass Transfer and Three-Dimensional Fabrication of Tissue-Engineered Cartilages Based on Chitosan/Gelatin Hybrid Hydrogel Scaffold in a Rotating Bioreactor.

Zhu Y, Song K, Jiang S, Chen J, Tang L, Li S, Fan J, Wang Y, Zhao J, Liu T.

Appl Biochem Biotechnol. 2017 Jan;181(1):250-266. doi: 10.1007/s12010-016-2210-9. Epub 2016 Aug 15.

PMID:
27526111
5.

Multiresponsive hydrogel coassembled from phenylalanine and azobenzene derivatives as 3D scaffolds for photoguiding cell adhesion and release.

Liu GF, Ji W, Wang WL, Feng CL.

ACS Appl Mater Interfaces. 2015 Jan 14;7(1):301-7. doi: 10.1021/am506202s. Epub 2014 Dec 17.

PMID:
25372986
6.

Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame.

Song K, Li L, Li W, Zhu Y, Jiao Z, Lim M, Fang M, Shi F, Wang L, Liu T.

Mater Sci Eng C Mater Biol Appl. 2015 Oct;55:384-92. doi: 10.1016/j.msec.2015.05.062. Epub 2015 May 27.

PMID:
26117769
7.

Fabrication of micropatterned alginate-gelatin and k-carrageenan hydrogels of defined shapes using simple wax mould method as a platform for stem cell/induced Pluripotent Stem Cells (iPSC) culture.

Vignesh S, Gopalakrishnan A, M R P, Nair SV, Jayakumar R, Mony U.

Int J Biol Macromol. 2018 Jun;112:737-744. doi: 10.1016/j.ijbiomac.2018.02.031. Epub 2018 Feb 7.

PMID:
29427684
8.

VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding.

Occhetta P, Visone R, Russo L, Cipolla L, Moretti M, Rasponi M.

J Biomed Mater Res A. 2015 Jun;103(6):2109-17. doi: 10.1002/jbm.a.35346. Epub 2014 Oct 21.

PMID:
25294368
9.

Micropatterning of reagent-free, high energy crosslinked gelatin hydrogels for bioapplications.

Heyart B, Weidt A, Wisotzki EI, Zink M, Mayr SG.

J Biomed Mater Res B Appl Biomater. 2018 Jan;106(1):320-330. doi: 10.1002/jbm.b.33849. Epub 2017 Jan 31.

PMID:
28140524
10.

Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate.

Hosseini V, Ahadian S, Ostrovidov S, Camci-Unal G, Chen S, Kaji H, Ramalingam M, Khademhosseini A.

Tissue Eng Part A. 2012 Dec;18(23-24):2453-65. doi: 10.1089/ten.TEA.2012.0181.

11.

Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.

Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, Zorlutuna P, Vrana NE, Ghaemmaghami AM, Dokmeci MR, Khademhosseini A.

Biofabrication. 2014 Jun;6(2):024105. doi: 10.1088/1758-5082/6/2/024105. Epub 2014 Apr 3.

12.

Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels.

Rosales AM, Mabry KM, Nehls EM, Anseth KS.

Biomacromolecules. 2015 Mar 9;16(3):798-806. doi: 10.1021/bm501710e. Epub 2015 Feb 10.

13.

Adipose-derived stem cells cultivated on electrospun l-lactide/glycolide copolymer fleece and gelatin hydrogels under flow conditions - aiming physiological reality in hypodermis tissue engineering.

Gugerell A, Neumann A, Kober J, Tammaro L, Hoch E, Schnabelrauch M, Kamolz L, Kasper C, Keck M.

Burns. 2015 Feb;41(1):163-71. doi: 10.1016/j.burns.2014.06.010. Epub 2014 Nov 4.

PMID:
25440846
14.

In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels.

Noshadi I, Hong S, Sullivan KE, Shirzaei Sani E, Portillo-Lara R, Tamayol A, Shin SR, Gao AE, Stoppel WL, Black LD III, Khademhosseini A, Annabi N.

Biomater Sci. 2017 Sep 26;5(10):2093-2105. doi: 10.1039/c7bm00110j.

15.

Interactions between structural and chemical biomimetism in synthetic stem cell niches.

Nava MM, Raimondi MT, Credi C, De Marco C, Turri S, Cerullo G, Osellame R.

Biomed Mater. 2015 Jan 16;10(1):015012. doi: 10.1088/1748-6041/10/1/015012.

PMID:
25594262
16.

Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.

Hwang CM, Sant S, Masaeli M, Kachouie NN, Zamanian B, Lee SH, Khademhosseini A.

Biofabrication. 2010 Sep;2(3):035003. doi: 10.1088/1758-5082/2/3/035003. Epub 2010 Sep 8.

17.

Cell-laden microengineered gelatin methacrylate hydrogels.

Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A.

Biomaterials. 2010 Jul;31(21):5536-44. doi: 10.1016/j.biomaterials.2010.03.064. Epub 2010 Apr 24.

18.

Gelatin-based biomaterial engineering with anhydride-containing oligomeric cross-linkers.

Loth T, Hötzel R, Kascholke C, Anderegg U, Schulz-Siegmund M, Hacker MC.

Biomacromolecules. 2014 Jun 9;15(6):2104-18. doi: 10.1021/bm500241y. Epub 2014 May 21.

PMID:
24806218
19.

Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application.

Yoon HJ, Shin SR, Cha JM, Lee SH, Kim JH, Do JT, Song H, Bae H.

PLoS One. 2016 Oct 10;11(10):e0163902. doi: 10.1371/journal.pone.0163902. eCollection 2016.

20.

Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells.

Choi MY, Kim JT, Lee WJ, Lee Y, Park KM, Yang YI, Park KD.

Acta Biomater. 2017 Mar 1;50:234-248. doi: 10.1016/j.actbio.2017.01.002. Epub 2017 Jan 4.

PMID:
28063988

Supplemental Content

Support Center