Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Theoretical Study on Elementary Reaction Steps in Thermal Decomposition Processes of Syringol-Type Monolignol Compounds.

Furutani Y, Dohara Y, Kudo S, Hayashi JI, Norinaga K.

J Phys Chem A. 2018 Jan 25;122(3):822-831. doi: 10.1021/acs.jpca.7b09450. Epub 2018 Jan 5.

PMID:
29236494
2.

Theoretical Study on the Kinetics of Thermal Decomposition of Guaiacol and Catechol.

Furutani Y, Dohara Y, Kudo S, Hayashi JI, Norinaga K.

J Phys Chem A. 2017 Nov 9;121(44):8495-8503. doi: 10.1021/acs.jpca.7b08112. Epub 2017 Oct 25.

PMID:
29016140
3.

Theoretical Study on Reaction Pathways Leading to CO and CO2 in the Pyrolysis of Resorcinol.

Furutani Y, Kudo S, Hayashi JI, Norinaga K.

J Phys Chem A. 2017 Jan 26;121(3):631-637. doi: 10.1021/acs.jpca.6b05168. Epub 2017 Jan 17.

PMID:
28040900
4.

Enabling microbial syringol conversion through structure-guided protein engineering.

Machovina MM, Mallinson SJB, Knott BC, Meyers AW, Garcia-Borràs M, Bu L, Gado JE, Oliver A, Schmidt GP, Hinchen DJ, Crowley MF, Johnson CW, Neidle EL, Payne CM, Houk KN, Beckham GT, McGeehan JE, DuBois JL.

Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13970-13976. doi: 10.1073/pnas.1820001116. Epub 2019 Jun 24.

5.

Mechanistic and Kinetic Investigations on the Ozonolysis of Biomass Burning Products: Guaiacol, Syringol and Creosol.

Chen X, Sun Y, Qi Y, Liu L, Xu F, Zhao Y.

Int J Mol Sci. 2019 Sep 11;20(18). pii: E4492. doi: 10.3390/ijms20184492.

6.

Pyrolysis of tert-butyl tert-butanethiosulfinate, t-BuS(O)St-Bu: a computational perspective of the decomposition pathways.

Mondal B, Mandal D, Das AK.

J Phys Chem A. 2011 Apr 14;115(14):3068-78. doi: 10.1021/jp109725w. Epub 2011 Mar 18.

PMID:
21417300
7.

Rate constants for the thermal decomposition of ethanol and its bimolecular reactions with OH and D: reflected shock tube and theoretical studies.

Sivaramakrishnan R, Su MC, Michael JV, Klippenstein SJ, Harding LB, Ruscic B.

J Phys Chem A. 2010 Sep 9;114(35):9425-39. doi: 10.1021/jp104759d.

PMID:
20715882
8.

Theoretical Investigation of the Radical-Radical Reaction of O((3)P) + C2H3 and Comparison with Gas-Phase Crossed-Beam Experiments.

Jung SH, Jang SC, Kim JW, Kim JW, Choi JH.

J Phys Chem A. 2015 Dec 10;119(49):11761-71. doi: 10.1021/acs.jpca.5b09191. Epub 2015 Nov 25.

PMID:
26562486
9.

Theoretical study of unimolecular decomposition of catechol.

Altarawneh M, Dlugogorski BZ, Kennedy EM, Mackie JC.

J Phys Chem A. 2010 Jan 21;114(2):1060-7. doi: 10.1021/jp909025s.

PMID:
20028002
10.

Reaction mechanism of naphthyl radicals with molecular oxygen. 1. Theoretical study of the potential energy surface.

Zhou CW, Kislov VV, Mebel AM.

J Phys Chem A. 2012 Feb 16;116(6):1571-85. doi: 10.1021/jp2119313. Epub 2012 Feb 2.

PMID:
22239650
12.

OH-Initiated Reactions of p-Coumaryl Alcohol Relevant to the Lignin Pyrolysis. Part I. Potential Energy Surface Analysis ⊥.

Asatryan R, Hudzik JM, Bozzelli JW, Khachatryan L, Ruckenstein E.

J Phys Chem A. 2019 Apr 4;123(13):2570-2585. doi: 10.1021/acs.jpca.9b00185. Epub 2019 Mar 20.

PMID:
30848901
13.

The pyrolysis of 2-methylfuran: a quantum chemical, statistical rate theory and kinetic modelling study.

Somers KP, Simmie JM, Metcalfe WK, Curran HJ.

Phys Chem Chem Phys. 2014 Mar 21;16(11):5349-67. doi: 10.1039/c3cp54915a.

PMID:
24496403
14.

Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.

Chin YH, Buda C, Neurock M, Iglesia E.

J Am Chem Soc. 2011 Oct 12;133(40):15958-78. doi: 10.1021/ja202411v. Epub 2011 Sep 15.

PMID:
21919447
15.

Theoretical investigations on the thermal decomposition mechanism of 5-hydroxy-6-hydroperoxy-5,6-dihydrothymidine in water.

Chen ZQ, Xue Y.

J Phys Chem B. 2010 Oct 7;114(39):12641-54. doi: 10.1021/jp100933d.

PMID:
20839840
16.

A density functional theory study of the decomposition mechanism of nitroglycerin.

Pei L, Dong K, Tang Y, Zhang B, Yu C, Li W.

J Mol Model. 2017 Aug 21;23(9):269. doi: 10.1007/s00894-017-3440-7.

PMID:
28828550
17.

The pyrolytic degradation of wood-derived lignin from pulping process.

Shen DK, Gu S, Luo KH, Wang SR, Fang MX.

Bioresour Technol. 2010 Aug;101(15):6136-46. doi: 10.1016/j.biortech.2010.02.078. Epub 2010 Mar 21.

PMID:
20307972
18.

Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.

Peukert SL, Labbe NJ, Sivaramakrishnan R, Michael JV.

J Phys Chem A. 2013 Oct 10;117(40):10228-38. doi: 10.1021/jp4073153. Epub 2013 Sep 24.

PMID:
23968575
19.

High temperature shock tube and theoretical studies on the thermal decomposition of dimethyl carbonate and its bimolecular reactions with H and D-atoms.

Peukert SL, Sivaramakrishnan R, Michael JV.

J Phys Chem A. 2013 May 9;117(18):3718-28. doi: 10.1021/jp312643k. Epub 2013 Apr 25.

PMID:
23510116
20.

A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.

Jiang X, Lu Q, Hu B, Liu J, Dong C, Yang Y.

Int J Mol Sci. 2017 Nov 9;18(11). pii: E2364. doi: 10.3390/ijms18112364.

Supplemental Content

Support Center