Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 73

1.

Modification of Ga2O3 by an Ag-Cr core-shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO2 by H2O.

Pang R, Teramura K, Tatsumi H, Asakura H, Hosokawa S, Tanaka T.

Chem Commun (Camb). 2018 Jan 25;54(9):1053-1056. doi: 10.1039/c7cc07800e.

PMID:
29231929
2.

Enhancement of CO Evolution by Modification of Ga2O3 with Rare-Earth Elements for the Photocatalytic Conversion of CO2 by H2O.

Tatsumi H, Teramura K, Huang Z, Wang Z, Asakura H, Hosokawa S, Tanaka T.

Langmuir. 2017 Dec 12;33(49):13929-13935. doi: 10.1021/acs.langmuir.7b03191. Epub 2017 Dec 1.

PMID:
29144762
3.

A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water.

Teramura K, Wang Z, Hosokawa S, Sakata Y, Tanaka T.

Chemistry. 2014 Aug 4;20(32):9906-9. doi: 10.1002/chem.201402242. Epub 2014 Jul 10.

PMID:
25044046
4.

The KCaSrTa5O15 photocatalyst with tungsten bronze structure for water splitting and CO2 reduction.

Takayama T, Tanabe K, Saito K, Iwase A, Kudo A.

Phys Chem Chem Phys. 2014 Nov 28;16(44):24417-22. doi: 10.1039/c4cp03892d.

PMID:
25301205
5.

Photocatalytic Activity of Ga2O3 Supported on Al2O3 for Water Splitting and CO2 Reduction.

Ito R, Akatsuka M, Ozawa A, Kato Y, Kawaguchi Y, Yamamoto M, Tanabe T, Yoshida T.

ACS Omega. 2019 Mar 19;4(3):5451-5458. doi: 10.1021/acsomega.9b00048. eCollection 2019 Mar 31.

6.

Sodium Cation Substitution in Sr2KTa5O15 toward Enhancement of Photocatalytic Conversion of CO2 Using H2O as an Electron Donor.

Huang Z, Yoshizawa S, Teramura K, Asakura H, Hosokawa S, Tanaka T.

ACS Omega. 2017 Nov 20;2(11):8187-8197. doi: 10.1021/acsomega.7b01305. eCollection 2017 Nov 30.

7.

Highly Active NaTaO3 -Based Photocatalysts for CO2 Reduction to Form CO Using Water as the Electron Donor.

Nakanishi H, Iizuka K, Takayama T, Iwase A, Kudo A.

ChemSusChem. 2017 Jan 10;10(1):112-118. doi: 10.1002/cssc.201601360. Epub 2016 Dec 14.

PMID:
27874269
8.

Synergistic interplay of Zn and Rh-Cr promoters on Ga2O3 based photocatalysts for water splitting.

Borges Ordoño M, Yasumura S, Glatzel P, Urakawa A.

Phys Chem Chem Phys. 2018 Sep 19;20(36):23515-23521. doi: 10.1039/c8cp03987a.

PMID:
30183023
9.

Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent.

Iizuka K, Wato T, Miseki Y, Saito K, Kudo A.

J Am Chem Soc. 2011 Dec 28;133(51):20863-8. doi: 10.1021/ja207586e. Epub 2011 Dec 5.

PMID:
22087856
10.

Metallic MoO₂ cocatalyst significantly enhances visible-light photocatalytic hydrogen production over Mo₂/Zn₀.₅Cd₀.₅S heterojunction.

Du H, Xie X, Zhu Q, Lin L, Jiang YF, Yang ZK, Zhou X, Xu AW.

Nanoscale. 2015 Mar 19;7(13):5752-9. doi: 10.1039/c4nr06949h.

PMID:
25751055
11.

Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light.

Wang S, Hou Y, Wang X.

ACS Appl Mater Interfaces. 2015 Feb 25;7(7):4327-35. doi: 10.1021/am508766s. Epub 2015 Feb 17.

PMID:
25646682
12.

A silver-manganese dual co-catalyst for selective reduction of carbon dioxide into carbon monoxide over a potassium hexatitanate photocatalyst with water.

Zhu X, Yamamoto A, Imai S, Tanaka A, Kominami H, Yoshida H.

Chem Commun (Camb). 2019 Nov 7;55(90):13514-13517. doi: 10.1039/c9cc06038c.

PMID:
31599285
13.

Synergistic effect of CoPi-hole and Cu(ii)-electron cocatalysts for enhanced photocatalytic activity and photoinduced stability of Ag3PO4.

Wang P, Xu S, Xia Y, Wang X, Yu H, Yu J.

Phys Chem Chem Phys. 2017 Apr 19;19(16):10309-10316. doi: 10.1039/c7cp01043e.

PMID:
28397913
14.

Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays.

Kang Q, Wang T, Li P, Liu L, Chang K, Li M, Ye J.

Angew Chem Int Ed Engl. 2015 Jan 12;54(3):841-5. doi: 10.1002/anie.201409183. Epub 2014 Nov 24.

PMID:
25422137
15.

Boosting Photocatalytic Water Splitting: Interfacial Charge Polarization in Atomically Controlled Core-Shell Cocatalysts.

Bai S, Yang L, Wang C, Lin Y, Lu J, Jiang J, Xiong Y.

Angew Chem Int Ed Engl. 2015 Dec 1;54(49):14810-4. doi: 10.1002/anie.201508024. Epub 2015 Oct 14.

PMID:
26463828
16.

Photocatalytic reduction of CO2 and protons using water as an electron donor over potassium tantalate nanoflakes.

Li K, Handoko AD, Khraisheh M, Tang J.

Nanoscale. 2014 Aug 21;6(16):9767-73. doi: 10.1039/c4nr01490a. Epub 2014 Jul 9.

PMID:
25007379
17.

Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution.

Sakata Y, Hayashi T, Yasunaga R, Yanaga N, Imamura H.

Chem Commun (Camb). 2015 Aug 21;51(65):12935-8. doi: 10.1039/c5cc03483c.

PMID:
26185801
18.

Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods.

Qu Y, Cheng R, Su Q, Duan X.

J Am Chem Soc. 2011 Oct 26;133(42):16730-3. doi: 10.1021/ja204383q. Epub 2011 Oct 4.

19.

Synthesis of AG@AgCl Core-Shell Structure Nanowires and Its Photocatalytic Oxidation of Arsenic (III) Under Visible Light.

Qin Y, Cui Y, Tian Z, Wu Y, Li Y.

Nanoscale Res Lett. 2017 Dec;12(1):247. doi: 10.1186/s11671-017-2017-9. Epub 2017 Apr 4.

20.

Amine-Functionalized Titanate Nanosheet-Assembled Yolk@Shell Microspheres for Efficient Cocatalyst-Free Visible-Light Photocatalytic CO2 Reduction.

Liu S, Xia J, Yu J.

ACS Appl Mater Interfaces. 2015 Apr 22;7(15):8166-75. doi: 10.1021/acsami.5b00982. Epub 2015 Apr 8.

PMID:
25815559

Supplemental Content

Support Center