Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Intrinsic short-tailed azole resistance in mucormycetes is due to an evolutionary conserved aminoacid substitution of the lanosterol 14α-demethylase.

Caramalho R, Tyndall JDA, Monk BC, Larentis T, Lass-Flörl C, Lackner M.

Sci Rep. 2017 Nov 21;7(1):15898. doi: 10.1038/s41598-017-16123-9.

2.

Impact of Homologous Resistance Mutations from Pathogenic Yeast on Saccharomyces cerevisiae Lanosterol 14α-Demethylase.

Sagatova AA, Keniya MV, Tyndall JDA, Monk BC.

Antimicrob Agents Chemother. 2018 Feb 23;62(3). pii: e02242-17. doi: 10.1128/AAC.02242-17. Print 2018 Mar.

3.

Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function.

Fan J, Urban M, Parker JE, Brewer HC, Kelly SL, Hammond-Kosack KE, Fraaije BA, Liu X, Cools HJ.

New Phytol. 2013 May;198(3):821-35. doi: 10.1111/nph.12193. Epub 2013 Feb 27.

4.

Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens.

Becher R, Wirsel SG.

Appl Microbiol Biotechnol. 2012 Aug;95(4):825-40. doi: 10.1007/s00253-012-4195-9. Epub 2012 Jun 12. Review.

PMID:
22684327
5.

Cytochrome P450 lanosterol 14α-demethylase (CYP51): insights from molecular genetic analysis of the ERG11 gene in Saccharomyces cerevisiae.

Loper JC.

J Steroid Biochem Mol Biol. 1992 Dec;43(8):1107-16. doi: 10.1016/0960-0760(92)90339-K. Review.

PMID:
22217856
6.

Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Delta7-24, 25-dihydrolanosterol.

Hargrove TY, Wawrzak Z, Liu J, Waterman MR, Nes WD, Lepesheva GI.

J Lipid Res. 2012 Feb;53(2):311-20. doi: 10.1194/jlr.M021865. Epub 2011 Nov 30.

7.

Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14α-Demethylase.

Sagatova AA, Keniya MV, Wilson RK, Monk BC, Tyndall JD.

Antimicrob Agents Chemother. 2015 Aug;59(8):4982-9. doi: 10.1128/AAC.00925-15. Epub 2015 Jun 8.

8.

Functional expression and characterization of CYP51 from dandruff-causing Malassezia globosa.

Kim D, Lim YR, Ohk SO, Kim BJ, Chun YJ.

FEMS Yeast Res. 2011 Feb;11(1):80-7. doi: 10.1111/j.1567-1364.2010.00692.x. Epub 2010 Nov 26.

9.

Triazole resistance mediated by mutations of a conserved active site tyrosine in fungal lanosterol 14α-demethylase.

Sagatova AA, Keniya MV, Wilson RK, Sabherwal M, Tyndall JD, Monk BC.

Sci Rep. 2016 May 18;6:26213. doi: 10.1038/srep26213.

10.

Expression, purification, and characterization of Aspergillus fumigatus sterol 14-alpha demethylase (CYP51) isoenzymes A and B.

Warrilow AG, Melo N, Martel CM, Parker JE, Nes WD, Kelly SL, Kelly DE.

Antimicrob Agents Chemother. 2010 Oct;54(10):4225-34. doi: 10.1128/AAC.00316-10. Epub 2010 Jul 26.

11.

A New Amino Acid Substitution at G150S in Lanosterol 14-α Demethylase (Erg11 protein) in Multi-azole-resistant Trichosporon asahii.

Kushima H, Tokimatsu I, Ishii H, Kawano R, Watanabe K, Kadota JI.

Med Mycol J. 2017;58(1):E23-E28. doi: 10.3314/mmj.16-00027.

12.

Optimized expression and catalytic properties of a wheat obtusifoliol 14alpha-demethylase (CYP51) expressed in yeast. Complementation of erg11Delta yeast mutants by plant CYP51.

Cabello-Hurtado F, Taton M, Forthoffer N, Kahn R, Bak S, Rahier A, Werck-Reichhart D.

Eur J Biochem. 1999 Jun;262(2):435-46.

13.

Identification, modeling and ligand affinity of early deuterostome CYP51s, and functional characterization of recombinant zebrafish sterol 14α-demethylase.

Morrison AM, Goldstone JV, Lamb DC, Kubota A, Lemaire B, Stegeman JJ.

Biochim Biophys Acta. 2014 Jun;1840(6):1825-36. doi: 10.1016/j.bbagen.2013.12.009. Epub 2013 Dec 19.

14.
15.

The amino acid residues affecting the activity and azole susceptibility of rat CYP51 (sterol 14-demethylase P450).

Nitahara Y, Kishimoto K, Yabusaki Y, Gotoh O, Yoshida Y, Horiuchi T, Aoyama Y.

J Biochem. 2001 May;129(5):761-8.

16.

Structural and Functional Elucidation of Yeast Lanosterol 14α-Demethylase in Complex with Agrochemical Antifungals.

Tyndall JD, Sabherwal M, Sagatova AA, Keniya MV, Negroni J, Wilson RK, Woods MA, Tietjen K, Monk BC.

PLoS One. 2016 Dec 1;11(12):e0167485. doi: 10.1371/journal.pone.0167485. eCollection 2016.

18.

Sterol content analysis suggests altered eburicol 14alpha-demethylase (CYP51) activity in isolates of Mycosphaerella graminicola adapted to azole fungicides.

Bean TP, Cools HJ, Lucas JA, Hawkins ND, Ward JL, Shaw MW, Fraaije BA.

FEMS Microbiol Lett. 2009 Jun;296(2):266-73. doi: 10.1111/j.1574-6968.2009.01645.x. Epub 2009 May 8.

19.

Molecular characterization and in vitro antifungal susceptibility of 80 clinical isolates of mucormycetes in Delhi, India.

Chowdhary A, Kathuria S, Singh PK, Sharma B, Dolatabadi S, Hagen F, Meis JF.

Mycoses. 2014 Dec;57 Suppl 3:97-107. doi: 10.1111/myc.12234. Epub 2014 Sep 23.

PMID:
25250768
20.

Heterologous expression and characterization of the sterol 14α-demethylase CYP51F1 from Candida albicans.

Park HG, Lee IS, Chun YJ, Yun CH, Johnston JB, Montellano PR, Kim D.

Arch Biochem Biophys. 2011 May 1;509(1):9-15. doi: 10.1016/j.abb.2011.02.002. Epub 2011 Feb 17.

Supplemental Content

Support Center