Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Multiple optimality criteria support Ornithoscelida.

Parry LA, Baron MG, Vinther J.

R Soc Open Sci. 2017 Oct 25;4(10):170833. doi: 10.1098/rsos.170833. eCollection 2017 Oct. Erratum in: R Soc Open Sci. 2018 Mar 14;5(3):180154.

2.

A new hypothesis of dinosaur relationships and early dinosaur evolution.

Baron MG, Norman DB, Barrett PM.

Nature. 2017 Mar 22;543(7646):501-506. doi: 10.1038/nature21700.

PMID:
28332513
4.

Molecular phylogeny of the carnivora (mammalia): assessing the impact of increased sampling on resolving enigmatic relationships.

Flynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA.

Syst Biol. 2005 Apr;54(2):317-37.

PMID:
16012099
5.

Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria.

Padial JM, Grant T, Frost DR.

Zootaxa. 2014 Jun 26;3825:1-132. doi: 10.11646/zootaxa.3825.1.1. Erratum in: Zootaxa. 2014;3827(4):599-600.

PMID:
24989881
6.

The systematic relationships and biogeographic history of ornithischian dinosaurs.

Boyd CA.

PeerJ. 2015 Dec 22;3:e1523. doi: 10.7717/peerj.1523. eCollection 2015.

7.

The origin and early evolution of dinosaurs.

Langer MC, Ezcurra MD, Bittencourt JS, Novas FE.

Biol Rev Camb Philos Soc. 2010 Feb;85(1):55-110. doi: 10.1111/j.1469-185X.2009.00094.x. Epub 2009 Nov 6. Review.

PMID:
19895605
8.
9.

Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets.

Smith MR.

Biol Lett. 2019 Feb 28;15(2):20180632. doi: 10.1098/rsbl.2018.0632.

PMID:
30958126
10.
11.

Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data.

O'Reilly JE, Puttick MN, Parry L, Tanner AR, Tarver JE, Fleming J, Pisani D, Donoghue PC.

Biol Lett. 2016 Apr;12(4). pii: 20160081. doi: 10.1098/rsbl.2016.0081.

12.

Stasis and convergence characterize morphological evolution in eupolypod II ferns.

Sundue MA, Rothfels CJ.

Ann Bot. 2014 Jan;113(1):35-54. doi: 10.1093/aob/mct247. Epub 2013 Nov 5.

14.

[Foundations of the new phylogenetics].

Pavlinov IIa.

Zh Obshch Biol. 2004 Jul-Aug;65(4):334-66. Russian.

PMID:
15490579
15.

Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data.

Puttick MN, O'Reilly JE, Tanner AR, Fleming JF, Clark J, Holloway L, Lozano-Fernandez J, Parry LA, Tarver JE, Pisani D, Donoghue PC.

Proc Biol Sci. 2017 Jan 11;284(1846). pii: 20162290. doi: 10.1098/rspb.2016.2290.

16.

Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data.

O'Reilly JE, Puttick MN, Pisani D, Donoghue PCJ.

Palaeontology. 2018 Jan;61(1):105-118. doi: 10.1111/pala.12330. Epub 2017 Oct 31.

17.

Early tetrapod relationships revisited.

Ruta M, Coates MI, Quicke DL.

Biol Rev Camb Philos Soc. 2003 May;78(2):251-345. Review. Erratum in: Biol Rev Camb Philos Soc. 2003 Aug;78(3):511.

PMID:
12803423
18.

Phylogeny of Bembidion and related ground beetles (Coleoptera: Carabidae: Trechinae: Bembidiini: Bembidiina).

Maddison DR.

Mol Phylogenet Evol. 2012 Jun;63(3):533-76. doi: 10.1016/j.ympev.2012.01.015. Epub 2012 Mar 13.

PMID:
22421212
20.

Morphological Data Sets Fit a Common Mechanism Much More Poorly than DNA Sequences and Call Into Question the Mkv Model.

Goloboff PA, Pittman M, Pol D, Xu X.

Syst Biol. 2019 May 1;68(3):494-504. doi: 10.1093/sysbio/syy077.

PMID:
30445627

Supplemental Content

Support Center